ABSTRACT BOOK FOREWORD:

This abstract book is published for the 11th Congress of Toxicology in Developing Countries (CTDC11), which is jointly organized by the Malaysian Society of Toxicology (MySOT) and the International Union of Toxicology (IUTOX). The CTDC11 will be held online from the 13th to 16th June 2021 due to the COVID-19 pandemic. It will be broadcasted to registered participants worldwide from the Kuala Lumpur Convention Centre, which is located at the foot of the iconic Petronas Twin Towers, displayed on the cover of this book. The CTDC11 programme begins with the pre-congress event of 2 continuing education courses, followed by the 3-day congress of three concurrent sessions on each day. The aims of the CTDC11 are (a) to provide a forum for scientific discussions on the role of toxicology towards supporting and achieving the Sustainable Development Goals, (b) to provide a platform for meeting, discussion, collaboration and networking among the participants of the congress and (c) to promote knowledge-sharing of current scientific findings, best practices and techniques in toxicology.

The CTDC11 has adopted the extended abstract format to widen the benefits of the scientific communication to many interested readers of this abstract book. Abstracts that did not follow the submission guideline or received after the deadline are not included in this book in order to assure harmony and timely publication of the abstract book. The editorial team has reviewed the abstracts submitted by the authors but limited to the suitability of the title and content for the assigned CTDC11 subthemes. The correctness and validity of the information in the abstracts, and compliance to the ethical, and legal consideration remain the authors full responsibilities. Therefore, readers are advised to contact the respective authors of the abstracts for clarification or verification of the abstract’s contents.

It is a challenging process to organize the abstracts due to the diverse nature of the fields related to toxicology with wide spectrum of the content offered by the authors from the various perspectives of academic, research, professional, regulatory and industrial. Thus, the authors presentation and their abstracts have been systematically arranged to the best fitting subthemes according to the sessions of the 3-day congress programme, namely 2 keynote lectures, 8 symposia, 2 workshops, 1 forum, 7 oral and 5 poster presentations. Readers are advised to use the hyperlinks at the Table of Content and respective pages marked by blue words or blue rectangle of dashed line that allows direct navigation to the sessions of interest within this abstract book. A home button represented by a small image of the Kuala Lumpur Tower surrounded with blue rectangle of dashed line has been made available at pages of the main parts of the book to facilitate readers in returning to the initial page viewed.

The content of this abstract book is subjected to the intellectual property rights protection, including copyrights. No part of this publication may be reproduced in any form or by any means without the written permission of the MySOT. Readers may cite the abstracts as shown below for the purpose of scientific communication, whilst for other purpose, please contact the authors of the respective abstracts.

Further correspondence with regard to this abstract book, please contact:
Honorary Secretary
Malaysian Society of Toxicology (1695-10-WKL)
c/o
Environmental Health & Industrial Safety Program
Faculty of Health Sciences, Universiti Kebangsaan Malaysia
Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, MALAYSIA

Disclaimer: This abstract book is published, shared and made available to readers, without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall MySOT and IUTOX be liable for damages arising from its use.

© Malaysian Society of Toxicology, 2021. All rights are reserved.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Part</th>
<th>Subheading (Blue words are embedded with hyperlink, click to access the page)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Abstract Book Foreword and Table of Content</td>
<td>2 to 3</td>
</tr>
<tr>
<td></td>
<td>Acknowledgement of Sponsors</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CTDC11 Organizing Committee</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>CTDC11 International Advisory Board and Abstract Book Editorial Team</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>CTDC11 Chair Welcome Remarks</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>IUTOX President Message</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>MySOT President (CTDC11 Co-chair) Message</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>CTDC11 Programme (Pre-Congress and 3 Days Congress)</td>
<td>10 to 14</td>
</tr>
<tr>
<td>II</td>
<td>Pre-Congress Continuing Education Courses (CEC)</td>
<td>15 to 25</td>
</tr>
<tr>
<td></td>
<td>Abstracts of the Invited Speakers Oral Presentations</td>
<td>26 to 81</td>
</tr>
<tr>
<td></td>
<td>Keynote 1: The Botanical Safety Consortium: A Public-Private Partnership to Enhance the Botanical Safety Toolkit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keynote 2: Global Harmonization – Togetherness for the Effective Implementation of the 3Rs of Animal Use within the Toxicity Assessments of Chemicals and Pharmaceuticals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Symposium 1: New Technologies & Mechanistic Data Supporting the Future of Risk Assessment Under Real-life Risk Simulation Approach</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Symposium 2: A User-Friendly Tool to Assess Risks from Combined Exposures to Indoor Air Pollutants in Public Spaces of Children</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Symposium 3: Recent Development in the Public Health Management of Chemical Incidents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Symposium 4: Emerging Issues of Herbal Medicine Safety</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Symposium 5: When & How We Can Stop Using Animals in Toxicology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Symposium 6: Advance Topics in Toxicologic Pathology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Symposium 7: Recent Advances in Liver Disease: from Non-Alcoholic Fatty Liver Disease to Fibrosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Symposium 8: 3Rs Alternatives for Regulatory Testing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forum: Women in Toxicology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Workshop 1: Challenges and Advances in Pesticides Risk Management (Dietary & Spray Operator Risk Assessments)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Workshop 2: Chemical Stewardship: Global Regulations and Beyond Compliance in Meeting Sustainable Performance of Energy Industry</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Abstracts of the Oral Sessions Presentation</td>
<td>82 to 120</td>
</tr>
<tr>
<td></td>
<td>Oral Session 1: Ecotoxicology / Environmental Toxicology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral Session 2: Risk Assessment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral Session 3: Herbal/Natural Product Toxicology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral Session 4: Genotoxicity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral Session 5: Mechanistic Toxicology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral Session 6: Nanotoxicology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral Session 7: Occupational, Clinical or Regulatory Toxicology</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Abstracts of the Poster Presentations</td>
<td>121 to 126</td>
</tr>
<tr>
<td></td>
<td>VI</td>
<td>127 to 164</td>
</tr>
<tr>
<td></td>
<td>(a) Occupational, Clinical or Regulatory Toxicology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Ecotoxicology or Environmental Toxicology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) Food, Herbal or Natural Product Toxicology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d) Computational Toxicology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(e) Mechanistic Toxicology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(f) Risk Assessment & Others</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>CTDC12 Invitation Announcement</td>
<td>165</td>
</tr>
</tbody>
</table>

© Malaysian Society of Toxicology, 2021. All rights are reserved.
ACKNOWLEDGEMENT OF SPONSORS:
HEARTIEST APPRECIATION TO OUR SPONSORS

TITANIUM SPONSORS

IPIECA
14th Floor, City Tower
40 Basinghall Street
London
EC2V 5DE
United Kingdom

Petroleum Nasional Berhad
(PETRONAS)
Level 13, Tower 1
PETRONAS Twin Towers
Kuala Lumpur City Centre
50088 Kuala Lumpur, Malaysia

American College of Toxicology
11190 Sunrise Valley Drive
Suite 300
Reston, Virginia 20191
United States of America

GOLD SPONSORS

CropLife Asia,
20 Malacca Street, Malacca Centre
#06-00 Singapore 048979

Graduate School of Comprehensive Human Sciences
University of Tsukuba
Tsukuba, Ibaraki 305-8575, Japan

Chinese Society of Toxicology
No. 10C11, Chang Yin Tower
88 Yong Ding Road, Hai Dian District
Beijing 100038, P.R. China

SILVER & OTHER SPONSORS

Japanese Society of Toxicology
Mainichi Academic Forum, Inc.
Palace Side Building
1-1-1 Hitotsubashi, Chiyoda-ku,
Tokyo 100-0003 Japan

Society of Toxicology
11190 Sunrise Valley Dr.
Suite 300
Reston, VA 20191
United States of America

Pfizer Incorporation
235 East
42nd Street NY
NY 10017
United States of America

Chemical Watch Research Ltd
Talbot House, 11-15 Market Street
Shrewsbury, SY1 1LG
United Kingdom

Billplz Sdn Bhd
K03-11-13, Level 11, Tower 3,
UOA Business Park
40150 Shah Alam, Malaysia
CTDC11 ORGANIZING COMMITTEE:

Chairperson: Dr. Salmaan Hussain Inayat-Hussain (PETRONAS, Malaysia)
Co-chairperson: Dr. Chan Kok Meng (Universiti Kebangsaan Malaysia)
Secretary: Dr. Siew Ee Ling (Universiti Kebangsaan Malaysia)
Assistant Secretary: Dr. Rozaini Abdullah (Universiti Putra Malaysia)
Treasurer: Dr. Goh Choo Ta (Universiti Kebangsaan Malaysia)
Assistant Treasurer: Dr. Nurul Farhana Kamaludin (Universiti Kebangsaan Malaysia)

Committees

Webmaster
Mr. Lim Kooi Fong (Bodhi Vision Sdn Bhd, Malaysia)

Publicity & Sponsorship
Dr. Mary Khoo Gaik Hong (Forest Research Institute Malaysia)
Dr. Hisyam Abdul Hamid (Universiti Teknologi MARA, Malaysia)

Logistic & Technical
Ms. Alia Nunis (CTDC11 Volunteer, Malaysia)
Dr. Siew Ee Ling (Universiti Kebangsaan Malaysia)
Dr. Rozaini Abdullah (Universiti Kebangsaan Malaysia)
Dr. Mogana Das Murtey (Universiti Sains Malaysia)

Scientific, Publication & Program

Chairs: Dr. José Manautou (IUTOX)
Dr. A’edah Abu Bakar (PETRONAS, Malaysia)
Co-chair: Dr. Jahangir Kamaldin (Universiti Sains Malaysia)

Members: Dr. Ahmad Faizal A. Razis (Universiti Putra Malaysia)
Dr. Jean-Frédéric WEBER (University of Bordeaux, France)
Dr. Masao Fukumura (PETRONAS, Malaysia)
Dr. Mogana Das Murtey (Universiti Sains Malaysia)
Dr. Mohd Nazil Salleh (PICOMS Int. University College, Malaysia)
Ms. Poh Wen Tsin (National Pharmaceutical Regulatory Agency, Malaysia)
Dr. Razinah Sharif (Universiti Kebangsaan Malaysia)
Dr. Salfarina Ramli (Universiti Teknologi MARA, Malaysia)
CTDC11
INTERNATIONAL ADVISORY BOARD & ABSTRACT BOOK EDITORIAL TEAM:

Highest appreciation to the members of the international advisory board in providing valuable guidance on the scientific program and the editorial team for the efforts in the publication of the abstract book.

INTERNATIONAL ADVISORY BOARD

Chairperson: Dr. Emanuela Corsini (IUTOX)
Members: Dr. A. Nurşen Başaran (IUTOX)
Dr. Alok Dhawan (CSIR-Indian Institute of Toxicology Research)
Dr. Elaine Faustman (University of Washington, USA)
Dr. Heather Wallace (British Society of Toxicology)
Dr. Henk Van Loveren (IUTOX)
Dr. Ho Han Kiat (National University of Singapore, Singapore)
Dr. José Manautou (IUTOX)
Dr. Lijie Fu (ASIATOX/Chinese Society of Toxicology/IUTOX)
Dr. Mary Ellen Cosenza (IUTOX)
Dr. Mary Gulumian (Toxicology Society of South Africa)
Dr. Mathuros Ruchirawat (Chulabhorn Research Institute, Thailand)
Dr. Mohammad Abdollahi (Iranian Society of Toxicology)
Dr. Peter N. Di Marco (IUTOX)
Dr. Vasilis Vasilou (Yale University, USA)
Dr. Yoshito Kumagai (IUTOX/Japanese Society of Toxicology)

EDITORIAL TEAM

Editor: Dr. A’edah Abu Bakar (PETRONAS, Malaysia)
Co-editor: Dr. Jahangir Kamaldin (Universiti Sains Malaysia)
Reviewers: Dr. Ahmad Faizal A. Razis (Universiti Putra Malaysia)
Dr. Jean-Frédéric WEBER (University of Bordeaux, France)
Dr. Masao Fukumura (PETRONAS, Malaysia)
Dr. Mogana Das Murtey (Universiti Sains Malaysia)
Dr. Mohd Nazil Salleh (PICOMS International University College, Malaysia)
Ms. Poh Wen Tsin (National Pharmaceutical Regulatory Agency, Malaysia)
Dr. Razinah Sharif (Universiti Kebangsaan Malaysia)
Dr. Salfarina Ramli (Universiti Teknologi MARA, Malaysia)

© Malaysian Society of Toxicology, 2021. All rights are reserved.
Dear Colleagues,

On behalf of the Malaysian Society of Toxicology (MySOT) and the International Union of Toxicology (IUTOX), we invite you to the virtual 11th Congress of Toxicology in Developing Countries (CTDC11) from 13th - 16th June 2021.

The theme of the Congress is Multidisciplinary Approaches in Toxicology Towards Supporting Sustainable Development Goals and this reflects the commitment of Malaysia and the South East Asia (SEA) region towards achieving the United Nations Sustainable Development Goals for a better and more sustainable future for all. The Congress will provide excellent opportunities for toxicologists especially those from countries often under-represented in global congresses.

We have designed a robust programme for the four-day Congress to include 2 continuing education courses, 2 keynote speakers, 8 symposia and 2 workshop sessions to showcase the latest global updates with emphasis on challenges in developing countries. This will facilitate collaboration and partnerships in education, research and development.

Special thanks to all the speakers, participants, affiliated societies and sponsors for their contributions in making this congress a success. Finally, my special thanks to the organizing committee, IUTOX and MySOT leaders who have worked tirelessly in ensuring the success of CTDC11 despite the various challenges faced due to COVID-19 pandemic.

We look forward to welcoming you to our virtual CTDC11 and we wish you very best wishes for a successful and productive Congress.

Visit us at https://ctdc11.org

SALMAAN HUSSAIN INAYAT-HUSSAIN PhD, DABT, ERT, FASc
Chair of the CTDC11
Kuala Lumpur, MALAYSIA
Dear Colleagues

It is my pleasure to welcome you all on behalf of the Organising Committee of the 11th Congress of Toxicology in Developing Countries (CTDC11), June 13–16, 2021 co-chaired by Salmaan H Inayat-Hussain & Chan Kok Meng under the auspices of the Malaysian Society of Toxicology (MySOT) and International Union of Toxicology (IUTOX), I congratulate the work of the organising committee. The theme of CTDC11 is *Multidisciplinary Approaches in Toxicology Towards Supporting Sustainable Development Goals* consistent with the United Nations Sustainable Development Goals for a better and more sustainable future for all. Because of COVID19, the congress will be a virtual meeting. Whilst we may miss the onsite interaction with our colleagues and the social enjoyment, we can focus on the science and debate in the Q&A sessions.

Professor Jose Castro is the founder of the first meeting of Toxicology in Developing Countries, TDC (Buenos Aires, Argentina) in 1987. It was followed by three successful yearly meetings before TDC joined under the auspices of IUTOX and was renamed CTDC by 2006.

The CTDC meetings since 1987 have been particularly productive and useful in the exchange of scientific knowledge and meeting the specific needs of developing countries. There has also been generous support from donors and colleagues. The progress has been positive and IUTOX will continue to support the needs of developing countries.

MySOT has provided a solid programme consistent with the environmental and health concerns of our communities that may eventually affect human health and wellbeing.

I wish you all a great meeting and a productive interaction with your colleagues and students after the meeting.

Your Sincerely

Visit us at https://www.iutox.org

DR. PETER N. DI MARCO PhD, FATS
President of the International Union of Toxicology
Western Australia, AUSTRALIA
Dear colleagues,

On behalf of the Malaysian Society of Toxicology, we warmly welcome you all to the 11th Congress of Toxicology in Developing Countries from the 13th to 16th June 2021.

The toxicological challenges associated with industrialization and globalization remain a major problem faced by many Asian countries including Malaysia. Therefore, the congress’ theme ‘Multidisiplinary Approaches in Toxicology Towards Supporting Sustainable Development Goals’, is aptly and reflects the commitment of Malaysia and its counterparts in this region towards making the United Nations’ 2030 Agenda for Sustainable Development a reality.

The four-day congress that include 2 continuing education courses, 2 keynote sessions, 8 symposia and 2 workshop sessions will highlight the latest toxicological advancement and challenges in developing countries. Various speakers from across the country and the world will present and discuss some of these important issues at the congress. This will allow participants to extend their collaborative network and explore current and future directions in toxicology.

To organize a congress of this magnitude is not a small task. My special thanks to the dedicated organizing committee led by Dr Salmaan Hussain Inayat-Hussian to make this congress happen despite the various challenges faced amidst the COVID-19 pandemic. Finally, I would also like to dedicate a special thanks to all the sponsors, speakers and participants for their contributions and support in making this congress a success.

Welcome to CTDC11 and I wish you all an enjoyable and productive congress!

Visit us at https://www.mysot.org.my

ASSOC. PROF. DR. CHAN KOK MENG
Co-chair of the CTDC11
President of the Malaysian Society of Toxicology
Kuala Lumpur, MALAYSIA
CTDC11 PROGRAMME:
PRE-Congress Continuing Education Courses (CEC)

Sunday, 13 June 2021

CEC 1: Evolving International Methodologies and Tools for Chemical Risk Assessment

09:00 – 09:10 Welcome Remarks
 Chair: Richard Brown, Switzerland; Mary Gulumian, South Africa
09:10 – 09:50 Introduction to the Course
 Mary Gulumian, NIOH, South Africa
09:50 – 10:30 Overview of IPCS Methodologies and their Interrelationships
 Bette Meek, Uni. of Ottawa, Canada
10:30 – 10:50 Break
10:50 – 11:30 Update on Latest WHO/IPCS Activities on Chemical Risk Assessment Methodologies, Including the Human Health Risk Assessment Toolkit
 Richard Brown, WHO, Switzerland
11:30 – 12:10 Computational Toxicology in Hazard Characterization and Risk Assessment
 Bette Meek, Uni. of Ottawa, Canada
12:10 – 12:50 Information Resources & Applications: Databases for Hazard & Predictive Application of “Omics” Data
 Elaine Faustman, Uni. of Washington, USA
12:50 – 13:10 Question and Answer Session
13:10 – 14:10 Break
14:10 – 17:00 Interactive Exercise

CEC 2: Vaccine Development in the 21st Century

09:00 – 09:10 Welcome Remarks
 Chair: Alan Hoberman, Charles River Laboratories, USA
09:10 – 09:50 Introduction and History of Vaccines
 Deborah Novicki, DL Novicki Toxicology Consulting LLC
09:50 – 10:30 Non-Clinical Regulatory & Testing Considerations for Vaccine Development in 2021
 David Pepperl, Biologics Consulting
10:30 – 10:50 Break
10:50 – 11:30 Case Studies on Regulatory Toxicology for Prophylactic Vaccines for the Developing and Developed World
 Alex Rodriguez, GSK, Belgium
11:30 – 12:10 Vaccines and Pregnancy: COVID-19 and Special Groups
 Alan Hoberman, Charles River Laboratories, USA
12:10 – 12:30 Question and Answer Session
CTDC11 PROGRAMME:
3 DAYS CONGRESS FROM 14TH TO 16TH JUNE 2021

Kindly refer to the next three pages for the daily programme details
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 – 09:10</td>
<td>Welcome Speech & announcement of IUTOX Award and Lifetime Achievement Award winners (IUTOX President)</td>
</tr>
<tr>
<td>09:10 – 09:20</td>
<td>Welcome Speech & announcement of MySOT Award winners (MySOT President)</td>
</tr>
<tr>
<td>09:20 – 09:30</td>
<td>Opening Remarks (CTDC 11 Chair)</td>
</tr>
<tr>
<td>09:30 – 09:40</td>
<td>Symposium 1: New Technologies & Mechanistic Data</td>
</tr>
<tr>
<td></td>
<td>Supporting the Future of Risk Assessment Under Real-life Risk Simulation Approach</td>
</tr>
<tr>
<td></td>
<td>Chair: Michael Aschner, Albert Einstein Coll. Med., USA</td>
</tr>
<tr>
<td>09:40 – 10:10</td>
<td>Experimental Studies on Real-Life Risk Simulation Supporting the Shift to New Risk Assessment Approaches</td>
</tr>
<tr>
<td></td>
<td>Anca Oana Docea, Uni. of Med & Pharm Craiova, Romania</td>
</tr>
<tr>
<td>10:10 – 10:40</td>
<td>Complementary and Alternative Models in Risk Assessment: What Can We Learn from Worms?</td>
</tr>
<tr>
<td></td>
<td>Michael Aschner, Albert Einstein Coll. Med., USA</td>
</tr>
<tr>
<td>10:40 – 11:00</td>
<td>Break</td>
</tr>
<tr>
<td>11:00 – 11:30</td>
<td>The Application of Big Data and Machine Learning in Risk Assessment</td>
</tr>
<tr>
<td></td>
<td>Thomas Hartung, CAAT, John Hopkins Sch. Pub. Health, USA</td>
</tr>
<tr>
<td>11:30 – 12:00</td>
<td>Risk Assessment Evaluations in the 21st Century</td>
</tr>
<tr>
<td></td>
<td>Aristidis Tsatsakis, Uni. of Crete, Greece</td>
</tr>
<tr>
<td>12:00 – 12:20</td>
<td>Question and Answer Session</td>
</tr>
<tr>
<td>12:20 – 13:40</td>
<td>Break</td>
</tr>
<tr>
<td>13:40 – 13:50</td>
<td>Symposium 3 Recent Development in the Public Health Management of Chemical Incidents</td>
</tr>
<tr>
<td></td>
<td>Chair: Richard Brown, WHO, Switzerland</td>
</tr>
<tr>
<td>13:50 – 14:20</td>
<td>The 2020 Update of the WHO Guidelines for Poison Control</td>
</tr>
<tr>
<td></td>
<td>Martin Wilks, Swiss CAHT, Switzerland</td>
</tr>
<tr>
<td>14:20 – 14:50</td>
<td>Poisons Centres and Public Health Advice</td>
</tr>
<tr>
<td></td>
<td>Raquel Duarte-Davidson, Public Health England, UK</td>
</tr>
<tr>
<td>14:50 – 15:20</td>
<td>Emergency Response Preparedness for Chemical Incidents</td>
</tr>
<tr>
<td></td>
<td>Hazizar Bizaiz Toha, Johor Health Dept., MoH, Malaysia</td>
</tr>
<tr>
<td>15:20 – 15:40</td>
<td>Break</td>
</tr>
<tr>
<td>15:40 – 16:10</td>
<td>International Health Regulations and Core Capacities for Chemical Events</td>
</tr>
<tr>
<td></td>
<td>Richard Brown, WHO, Switzerland</td>
</tr>
<tr>
<td>16:10 – 16:40</td>
<td>Identifying New and Emerging Risks from Chemicals</td>
</tr>
<tr>
<td></td>
<td>Chris Weis, NIEHS, USA</td>
</tr>
<tr>
<td>16:40 – 17:00</td>
<td>Question and Answer Session</td>
</tr>
</tbody>
</table>

© Malaysian Society of Toxicology, 2021. All rights are reserved.
Day 2: Tuesday, 15th June 2021

Day 2 Subtheme: Emerging Issues in Toxicology

<table>
<thead>
<tr>
<th>Time</th>
<th>Session/Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 – 09:10</td>
<td>Remarks from ASIATOX President & Introduction to Keynote Speaker</td>
</tr>
</tbody>
</table>
| 09:10 – 09:50 | Keynote. The Botanical Safety Consortium: A Public-Private Partnership to Enhance the Botanical Safety Toolkit
Connie Mitchell, Health & Environmental Sciences Institute, USA |
| 09:50 – 10:00 | Symposium 4: Emerging Issues of Herbal Medicine Safety
Chairs: Nurşen Başaran, Hacettepe Univ., Turkey; Nan Mei, FDA, USA
Chair: Emanuela Corsini, Uni. of Milan, Italy; Thomas Hartung, CAAT, USA |
| 09:50 – 10:00 | Symposium 5: When & How We Can Stop Using Animals in Toxicology
Chair: Emanuela Corsini, Uni. of Milan, Italy; Thomas Hartung, CAAT, USA |
| 10:00 – 10:30 | Unpredictable Adverse Effects of Herbal Products
Nurşen Başaran, Hacettepe Univ., Turkey
Applicability Domains and Future of Non-animal Tests
Nicolle Kleinstreuer, NIH, USA |
| 10:30 – 11:00 | Complementary and Alternative Medicines: Malaysia Scenario
Seetha Ramasamy, NPRA
The View of the Chinese Centre for Alternative Research and Evaluation
Shujun Cheng, Shanghai Jiuotong Uni., China |
| 11:00 – 11:20 | Break |
| 11:20 – 11:50 | Registration of Herbal Drugs in EMA
Heidi Foth, Martin Luther Uni., Germany
The AFSA Collaboration: Implementing Animal-Free Safety Assessment of Cosmetics Globally
Catherine Willett, Human Soc International Europe
UNITAR’s Perspective on the Emerging Beyond 2020 Framework and What it Means for the GHS and PRTRS
Oliver Wootton, UN Inst. Training & Research; Servet Goren, Cefic |
| 11:50 – 12:20 | Quantitative Analysis of Toxicity Data of Herbal Products
Nan Mei, FDA, USA
The Way Forward: The Experience at CAAT
Thomas Hartung, CAAT, US
Managing Environmental Health Risks in the Oil & Gas Industry Nor Rahmah Nor Hashim, PETRONAS |
| 12:20 – 12:50 | Herbal Products: Regulation and Safety Testing in Thailand
Rawiwan Maniratanachote, NSTDA, Thailand
Immunotoxicology: A History of a Success
Emanuela Corsini, Uni. of Milan, Italy |
| 12:50 – 13:10 | Question and Answer Session |
| 13:10 – 14:10 | Break |
| 14:10 – 14:20 | Oral Session 3: Herbal/Natural Product Toxicology
Chair: Salfarina Ramlil, UiTM
Chair: Mogana Das Murtey, Uni. Sains Malaysia, Malaysia |
| 14:20 – 14:50 | Ochratoxin A and Antioxidant Activities of Roasted Coffee Beans in Phnom Penh, Cambodia
Oeung Sokunvary, Khon Kean Uni., Thailand
Pharmacological Activation of Autophagy Restores Cellular Homeostasis in UVB-Induced Genotoxic Stress Response in Skin
Sheikh Umar Ahmad, Indian Institute of Integrative Medicine, India
Comprehensive Histone, DNA Methylation and mRNA Expression Analysis of Murine Liver Repeatedly Exposed to Chemicals
Jun Kanno, NIEHS, Japan |
| 14:50 – 15:20 | Antioxidant Activities & Anti-inflammation of Coelion from Dendrobium scabrinugue
Hasseri Halim, Uni. Technology MARA, Malaysia
The Presence of Genotoxic and Carcinogenic Phytochemicals in Medicinal Plants Based on the Malaysian Herbal Monograph
Nur Azra M Panzi, Uni. Putra Malaysia, Malaysia
Fibroblast Growth Factor Receptor 4 as a Potential Druggable Target for Triple Negative Breast Cancer
Koh Yong Qin, National Uni., Singapore, Singapore |
| 15:20 – 15:40 | Break |
| 15:40 – 16:10 | Fish Acute Toxicity Testing of Litsea Garciae Methanolic Extract in Adult Zebraban
Siti Zaleha Raduan, Int. Islamic Uni., Malaysia, Malaysia
Role of Nrf2/Nqo1 Pathway in Mediated Arsenite-Induced Malignant Transformation
Yan An, Soochow Uni., China
Cerium Oxide Nanoparticles a Potential Therapy for Hepatic Fibrosis Symptoms
Adrian Boey, National Uni. of Singapore, Singapore |
| 16:10 – 16:40 | Toxicity Studies of Supercritical Fluid Extract of Local Ziziphus Mauritiana (Bidara) Fruit
Arnida Hani The, Uni., Kebangsaan Malaysia, Malaysia
Overview of Genotoxicity Field in Malaysian Environment
Mogana Das Murtey, Uni. Sains Malaysia, Malaysia
Reduction of Arsenic Toxicity Through Nrf2 Activation Mediated by (2)-2-Alkenals in Coriandrum Sativum L. Leaf Extract
Hanako Aoki, Uni. of Tsukuba, Japan |
| 16:40 – 17:00 | Question and Answer Session |

© Malaysian Society of Toxicology, 2021. All rights are reserved.
Day-3: Wednesday, 16th June 2021

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:55</td>
<td>Introduction to Keynote Speaker</td>
</tr>
<tr>
<td>09:00</td>
<td>Keynote: Global Harmonization – Togetherness for the Effective Implementation of the 3Rs of Animal Use within the Toxicity Assessments of Chemicals and Pharmaceuticals
Fiona Sewell, NC3Rs, UK</td>
</tr>
<tr>
<td>09:40</td>
<td>Symposium 6: Advance Topics in Toxicologic Pathology
Chair: Maria Lucia Zaidan Dagli, Uni. of Sao Paulo, Brazil</td>
</tr>
<tr>
<td>09:50</td>
<td>Symposium 7: Recent Advances in Liver Disease: from Non-Alcoholic Fatty Liver Disease (NAFLD) to Fibrosis
Chair: Joseph Manautou, Uni. of Connecticut, USA</td>
</tr>
<tr>
<td>10:00</td>
<td>Symposium 8: 3Rs Alternatives for Regulatory Testing
Chair: Masao Fukumara, PETRONAS, Malaysia</td>
</tr>
<tr>
<td>10:20</td>
<td>The Essential Use of Rodent Models for Toxicological Endpoints in Cancer Research
Maria Lucia Zaidan Dagli, Uni. of Sao Paulo, Brazil</td>
</tr>
<tr>
<td>10:40</td>
<td>Environmental Chemicals as Risk Modifiers for NAFLD
Juliane Beiter, Uni. of Pittsburgh, USA</td>
</tr>
<tr>
<td>10:50</td>
<td>Medical Devices and Non-Animal Methods for Toxicological Risk Assessment
Christian Pellevoisin, Episkin, France</td>
</tr>
<tr>
<td>10:50</td>
<td>Bridging the In Vitro and In Vivo Histopathological Evaluation for the Pharmaco Safety Assessment
John R Foster, ToxPath Sciences Ltd., UK</td>
</tr>
<tr>
<td>11:00</td>
<td>Impact of Multidrug Resistance Protein 4 (Mrp4) Function on Hepatic Lipid Accumulation
Josep Manautou, Uni. of Connecticut, USA</td>
</tr>
<tr>
<td>11:10</td>
<td>Integration of the 3Rs Alternatives in the Safety Testing for Nanotechnologies
Sasitorn Aueviriyavit, NANOTEC, Thailand</td>
</tr>
<tr>
<td>11:40</td>
<td>Comparative Pathology of the Toxicity of Drugs and Environmental Chemicals for Human Risk Assessment: Are Rodents Relevant?
Jerrold M. Ward, Global VetPathology, USA</td>
</tr>
<tr>
<td>11:50</td>
<td>Genetic Susceptibility to Non-Alcoholic Fatty Liver Disease: Asian Genome
Guruprasad Aithal, Queen’s Medical Centre, Nottingham, UK</td>
</tr>
<tr>
<td>12:00</td>
<td>Applying Zebrafish Embryo Acute Toxicity Test in China: Status and Prospect
Zhenlie Huang, Southern Medical University, China</td>
</tr>
</tbody>
</table>
CEC 1:
Evolving International Methodologies and Tools for Chemical Risk Assessment

Kindly scroll/flip next few pages to view the selected abstract
INTRODUCTION TO THE COURSE: EVOLVING INTERNATIONAL METHODOLOGIES AND TOOLS FOR CHEMICAL RISK ASSESSMENT (WHO)

MARY GULUMIAN¹,²

¹NATIONAL INSTITUTE FOR OCCUPATIONAL HEALTH, ²UNIVERSITY OF THE WITWATERSRAND AND NORTH WEST UNIVERSITY

ABSTRACT

Introduction:
Traditionally, toxicological studies using animal test species are conducted to identify the adverse effects produced by a specific chemical to determine a reference point which is then used to derive either a health-based guidance value or a margin of exposure. In these studies, descriptive and mechanistic toxicology approaches are used.

Objective:
Sheer scale in the numbers of chemicals that need to be studied, breadth of endpoints and pathways to be covered, levels of biological organization that need to be examined, range of exposure conditions that need to be considered, will make the implementation of descriptive and mechanistic toxicology approaches in the hazard assessment of chemicals a difficult task to achieve. Modern methodologies and tools are therefore proposed in the context of prioritisation of chemicals.

Methods:
This course will provide a review of modern methodologies and tools to assess hazardous nature of chemicals including among others the in silico tools such as (quantitative) structure activity relationships (Q)SARs) and Physiologically based pharmacokinetic (PBPK) modelling, a computational approach that simulates the absorption, distribution, metabolism and elimination (ADME) of chemical substances in the bodies of organisms.

Results and Discussion:
The use of such modern methodological approach has been recommended by the World Health Organization (WHO) and by different regulatory authorities worldwide such as the United States Environmental Protection Agency (US-EPA) where they have also highlighted the need to develop a guidance to pursue common principles for their application in chemical hazard assessment and risk assessment. Interactive exercises will therefore be provided on these in silico approaches that may be implemented in the risk assessment of chemicals.

Keywords: Hazard assessment, Computational toxicology, QSAR, PBPK, Risk assessment

References:
Not applicable
OVERVIEW OF IPCS METHODOLOGIES AND THEIR INTERRELATIONSHIPS

M.E. (BETTE) MEEK

MCLaughlin Centre, University of Ottawa, Ottawa, Canada

bmeek@uottawa.ca

ABSTRACT

Introduction:
Interrelationships of various Guidance documents of the World Health Organization (WHO)/International Programme on Chemical Safety (IPCS) Harmonization Initiative and selected recent Environmental Health Criteria documents (e.g., EHC 240) are “mapped” to provide additional context and guidance.

Objective:
The interrelationships of WHO/IPCS documents or products related to methodological approaches to chemical risk assessment are considered as a basis to provide practical advice concerning their implementation in tiered assessment and management strategies. Potential methodological gaps are identified and draft recommendations for follow up included.

Methods:
The level of description has been tailored to increase understanding of the interrelationships of guidance documents on methodology of WHO/IPCS as a basis to facilitate pragmatic application in tiered assessment strategies. Aspects relevant to the selection and application of approaches of varying complexities as a function of important considerations in problem formulation are presented.

Results and Discussion:
While the need for problem formulation to delineate focus to ensure efficiency and effectiveness of risk assessment to meet risk management objectives has been well documented, there is limited existing Guidance on its specific content or form or associated process to ensure adequate transparency and consistency of criteria for selected approaches or considerations for assessment. This is critical as a basis to streamline approaches to risk assessment and management in iterative and tiered fashion to ensure that no more resources are invested than is necessary to set a substance aside as a non-priority for further assessment or to additionally refine assessment as a basis to inform risk management to protect public health.

Keywords: problem formulation, tiered assessment, mode of action, uncertainty analysis

References:
ABSTRACT

Introduction:
The Guidance documents on chemical risk assessment developed by the World Health Organization (WHO)/International Programme on Chemical Safety (IPCS) are periodically updated to take account of scientific developments and changes in risk assessment practices. Two key guidance documents which have recently been updated will be highlighted in this presentation.

The WHO Human Health Risk Assessment Toolkit: Chemical Hazards provides guidance on how to conduct a chemical risk assessment, including how to obtain information and data published by international organizations. The Toolkit, first published in 2009, has recently been updated to reflect advances in chemical risk assessment methodology, including in dose-response assessment and characterizing uncertainty.

Environmental Health Criteria volume 240 provides guidance on chemical risk assessment methodology, in particular for assessing the health effects of chemicals in food. Key chapters of this publication have recently been updated to reflect the latest scientific advances in the areas of dose-response assessment and derivation of health-based guidance values, assessment of genotoxicity and advances in dietary risk assessment.

These key publications, the recent updates and other WHO/IPCS activities in the area of chemical risk assessment methodology will be presented.

Objective:
Not applicable

Methods:
Not applicable

Results and Discussion:
Not applicable

Keywords: WHO, IPCS, chemical risk assessment methodology, genotoxicity, dietary risk assessment

References:
Not applicable
ABSTRACT

Introduction:
Expansion of regulatory mandates internationally has required more efficient and effective risk assessment and management of much larger numbers of Existing Substances. This requires less reliance on labour intensive animal bioassays with a shift to more predictive inference by computational tools drawing upon a much broader array of data often generated at lower levels of biological organization.

Objective:
To frame the legislative background and integrative mechanistic constructs, such as Adverse Outcome Pathways (AOPs) and Mode of Action (MOA) and their associated quantitation to describe the conceptual basis for computational toxicology. To describe the nature and considerations for evaluation of various computational tools, such as quantitative structure activity (QSAR) analysis and physiologically based pharmacokinetic models (PBPK) in exposure and hazard assessment.

Methods:
A number of computational tools aid consideration of data in hazard and risk assessment. These include tools to facilitate and systematically document the chemical specific evidence for hazard, the quantitation of dose-response relationships in benchmark dose modelling, and the probabilistic characterization of uncertainty in default and chemical specific adjustment factors. In addition, chemically agnostic AOPs (descriptions of key events in the induction of disease) and their application in chemical specific hazard characterization (MOA) provide the conceptual construct for increasing incorporation of mechanistic data in hazard characterization and risk assessment. These mechanistic constructs provide the basis for quantitative characterization of predictive inference based on structural and physico-chemical chemical characteristics in QSAR analysis, toxicokinetics in PBPK modelling and response-response analysis in toxicodynamic modelling.

Results and Discussion:
The basis, nature and interface for computational models and their application in hazard and dose-response assessment are described. Considerations for evaluation of these models in regulatory application are also presented.

Keywords: Benchmark Dose Modelling, Probabilistic Uncertainty Analysis, Adverse Outcome Pathways, Mode of Action, PBPK & QSAR Models

References:
What is the QSAR Toolbox? www.qsartoolbox.org
INFORMATION RESOURCES AND APPLICATIONS: DATABASES FOR HAZARD AND PREDICTIVE APPLICATION OF ‘OMICS’ DATA

ELAINE M. FAUSTMAN
INSTITUTE FOR RISK ANALYSES AND RISK COMMUNICATION, UNIVERSITY OF WASHINGTON, SEATTLE, WA USA
faustman@toxicology.com

ABSTRACT

Introduction:
Both tremendous opportunities and challenges exist for Risk Assessors. The opportunities in open data sets have allowed many scientists to access vast datasets and track complex experiments conducted on a vast array of chemicals, organisms (C. elegans to human populations) and toxicological endpoints. The challenges to scientists have been to integrate these findings into risk assessment frameworks and models, in order to better inform both qualitative and quantitative risk management decisions.

Objective:
Three case studies will be used to illustrate these opportunities and provide problem-based solutions to these problems.

Methods:
The first case study will focus on the use of ontologies to facilitate cross species extrapolation and interpretation for informing adverse outcome pathways. The second case study will examine the use of systematic review for integrating databases for risk assessment and the third case study will examine the use of various omic platforms to address common risk assessment opportunities with an emphasis on single cell transcriptomics through metagenomics.

Results and Discussion:
These three cases will provide the attendee an introduction with application for the exciting new applications.

Keywords: qualitative risk management, quantitative risk management, adverse outcome pathways, transcriptomics, metagenomics

References:
Not applicable
PART II: ABSTRACTS OF THE CONTINUING EDUCATION COURSES (CEC)

CEC 2: VACCINE DEVELOPMENT IN THE 21ST CENTURY

Kindly scroll/flip next few pages to view the selected abstract
INTRODUCTION AND HISTORY OF VACCINES

DEBORAH L NOVICKI

DL NOVICKI TOXICOLOGY CONSULTING LLC, 147 CULLLINANE DRIVE, MARLBOROUGH MA 01752
dlnovickitox@gmail.com

ABSTRACT

Introduction:
‘The impact of vaccination on the health…is hard to exaggerate. With the exception of safe water, no other modality has had such a major effect on mortality reduction and population growth’ (1). Despite having such high health impact ‘comprehensive vaccinology training is not offered to medical/biological sciences students as part of their…courses and consequently there is insufficient knowledge of vaccine topics among health-care providers’ (2). We hope this course will pique your interest to learn even more!

Objective:
The aim of this talk is to introduce the audience to vaccines and vaccinology to set the stage for the speakers that follow.

Methods:
The presentation will provide an overview of the following: the history of vaccines and heroes of vaccinology; the innate and adaptive arms of the immune system; types of vaccines and adjuvants and how they interact with the immune system; the concept of ‘plug-and-play’ vaccines based on platforms; the continuing need for preventive and therapeutic vaccines and vaccines for special populations; and the ‘Valleys of Death’ and other challenges in vaccine R&D.

Results and Discussion:
Vaccines save millions of lives every year and we have come a long way since the seminal experiments by Edward Jenner with smallpox in the late 1700s. In parallel with an ever-deepening understanding of the innate and adaptive immune systems, the advancements in basic sciences, nonclinical and clinical safety and efficacy testing, manufacturing technologies, regulatory sciences, and the formation of public-private partnerships have set the stage for a promising future. Vaccine and adjuvant platforms, together with experience gained during epidemics and pandemics, offer opportunities for streamlining development of improved existing vaccines and for developing new vaccines for diseases that have been identified as high global health priorities. The speakers that follow will expand upon select concepts introduced in this presentation.

Keywords: Antigen, adjuvant, preventive vaccine, therapeutic vaccine, immune responses

References:
NONCLINICAL REGULATORY AND TESTING CONSIDERATIONS FOR VACCINE DEVELOPMENT IN 2021

DAVID J PEPPERL

BIOLOGICS CONSULTING, 1555 KING ST., STE 300, ALEXANDRIA, VA 22314

dpepperl@biologicsconsulting.com

ABSTRACT

Introduction:
The recent Covid-19 pandemic has once again highlighted the important role vaccines play in public health. Prior to approval or even clinical testing, nonclinical evaluation plays a crucial role in ensuring vaccine safety and efficacy. Hence this talk highlights the importance of understanding and compliance with current worldwide regulatory expectations for nonclinical testing of novel prophylactic vaccines.

Objective:
The aim of this presentation is to discuss important elements of vaccine nonclinical development programs supporting safety, clinical development and licensure.

Methods:
This talk will highlight important nonclinical safety and efficacy considerations and requirements involved in global vaccine development in 2021. The foundations of vaccine safety testing will be presented in light of recent advances in vaccine technology and the evolving regulatory environment during the current Covid-19 pandemic.

Results and Discussion:
Vaccine safety and efficacy testing has traditionally differed significantly from that normally employed for traditional small molecule drug or biologic products. US and worldwide regulators understand this distinction and have defined regulatory expectations commensurate with a vaccine’s intended use, biology, and diverse clinical populations. With new classes of both vaccines and adjuvants, and improvements in both immunological and analytical methodologies, the nonclinical regulatory expectations for vaccines have also evolved notably over the past several years. Consequently, this has resulted in a continued evolution in the nonclinical testing paradigms for novel vaccines. Moreover, the recent SARS, MERS and Covid-19 pandemics have also clearly demonstrated the need for both expedited development programs and innovative study designs. This presentation will discuss the unique aspects of vaccines and key nonclinical testing required in light of the rapid evolution of vaccine technologies, worldwide development programs and the changing landscape of recent infectious disease pandemics.

Keywords: Vaccines, Nonclinical, Regulatory, FDA, Safety

References:
None
CASE STUDIES ON REGULATORY TOXICOLOGY FOR PROPHYLACTIC VACCINES FOR THE DEVELOPING AND DEVELOPED WORLD

LUIS-ALEXANDER RODRIGUEZ

GLAXOSMITHKLINE-VACCINES, AVENUE FLEMING 20 WAVRE, BELGIUM 1300

luis-alexander.x.rodriguez@gsk.com

ABSTRACT

Introduction:
One third of GSK’s vaccines target diseases particularly prevalent in the developing world, including the WHO infectious disease priorities. In addition, the complexity of certain diseases with high medical burden require novel approaches in vaccine development.

Objective:
The aim of this presentation is to discuss important elements of vaccine nonclinical development programs supporting safety, clinical development and/or licensure.

Methods:
We present case studies of different novel vaccines, showcasing specific regulatory toxicology approaches taken to support licensure of these vaccines for use in the developing and developed world.

Results and Discussion:
The session will discuss how regulatory requirements for vaccines have evolved and will present case examples of novel nonclinical regulatory approaches taken to support the development or licensure of Herpes Zoster/Shingles, Malaria and Ebola prophylactic vaccines.

Keywords: vaccines, prophylactic, zoster, shingles, malaria, ebola

References:
None
ABSTRACT

Introduction:
Currently there are a number of COVID-19 vaccines approved for use in humans. The majority of these vaccines have been tested in pregnant animals, but none had completed clinical trials in pregnant women or juvenile populations prior to approval. This talk will review what is known about safety of COVID vaccines in pregnancy and juveniles.

Objective:
The aim of this presentation is to discuss what is known about the safety of these approved vaccine for use in pregnant women and children under the age of sixteen.

Methods:
This talk will present what is known about the results of testing of COVID vaccines in pregnant and juvenile animals and update what has been observed in pregnant women and juveniles. Additionally, trials that are in progress that included pregnant women and/or juveniles will also be reviewed.

Results and Discussion:
Vaccine safety is established in pregnant animals prior to use in women of childbearing potential or pregnant women. Rodent or rabbits models are typical with exposure occurring both prior to pregnancy to assure a response to the vaccine occurring during pregnancy (organogenesis) and with exposure occurring during pregnancy to assure that any direct toxicity of the vaccine can be evaluated. The number of doses administered in these studies is variable but usually follows the N+1 rule, or at least one more vaccination then is to be given in the clinic. Evaluation of the offspring in these studies includes the four endpoints of developmental toxicity (death, malformation, growth and functional development). Interestingly, no specific juvenile studies in animals are required. For juvenile studies in humans, recruitment of juveniles occurs based on age, with 12 to 16 year olds being administered the vaccine prior to 6 to 11 year olds and then moving to younger children if appropriate. The safety in pregnant women is monitored during clinical use of the vaccine as pregnancies are reported and followed to delivery and for sometime post birth. Formal clinical trials in pregnant women are in progress.

Keywords: Vaccines, Pregnancy, Juveniles, Safety

References:
None
PART III: LIST OF INVITED SPEAKERS

ORAL PRESENTATIONS

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Keynote 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>THE BOTANICAL SAFETY CONSORTIUM: A PUBLIC-PRIVATE</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>PARTNERSHIP TO ENHANCE THE BOTANICAL SAFETY TOOLKIT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Connie Mitchell</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GLOBAL HARMONISATION: WORKING TOGETHER TO APPLY AND</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>PROMOTE THE 3RS WITHIN TOXICITY ASSESSMENTS OF CHEMICALS AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHARMACEUTICALS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fiona Sewell</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Symposium 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL STUDIES ON REAL-LIFE RISK SIMULATION SUPPORTING THE</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>SHIFT TO NEW RISK ASSESSMENT APPROACHES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anca Oana Docea</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMPLEMENTARY AND ALTERNATIVE MODELS IN RISK ASSESSMENT: WHAT CAN WE</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>LEARN FORM WORMS?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Michael Aschner</td>
<td></td>
</tr>
<tr>
<td></td>
<td>THE APPLICATION OF BIG DATA AND MACHINE LEARNING IN RISK ASSESSMENT</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Thomas Hartung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Symposium 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OVERVIEW OF THE APPROACH TO COMBINED EXPOSURES IN THE WHO SCREENING</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>TOOL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.E. (Bette) Meek and Kathleen De Brouwere</td>
<td></td>
</tr>
<tr>
<td></td>
<td>THE SUPPORTING DATABASE: AN UPDATED RESOURCE OF INTERNATIONAL</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>GUIDANCE VALUES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kathleen De Brouwere and M.E. (Bette) Meek</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXPOSURE ASSESSMENT TO SUPPORT THE SCREENING TOOL</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Irina Zastenskaya et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APPLICATION OF THE SCREENING TOOL</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Tamás Szigeti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Symposium 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>THE 2020 UPDATE OF THE WHO GUIDELINES FOR POISON CONTROL</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Martin F Wilks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RECENT DEVELOPMENTS IN THE PUBLIC HEALTH MANAGEMENT OF CHEMICAL</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>INCIDENT: THE IMPORTANCE OF POISONS CENTRES IN ASSESSING RISKS TO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PUBLIC HEALTH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Raquel Duarte-Davidson</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EMERGENCY RESPONSE PREPAREDNESS FOR CHEMICAL INCIDENTS</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Haidar Rizal Toha</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTERNATIONAL HEALTH REGULATIONS AND CORE CAPACITIES FOR CHEMICAL</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>EVENTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Richard Brown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IDENTIFYING NEW AND EMERGING RISKS FROM CHEMICALS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chris Weis (Abstract is not available)</td>
<td></td>
</tr>
</tbody>
</table>
Symposium 4

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNPREDICTABLE ADVERSE EFFECTS OF HERBAL PRODUCTS</td>
<td>47</td>
</tr>
<tr>
<td>Nursen Basaran and A. Ahmet Basaran</td>
<td></td>
</tr>
<tr>
<td>COMPLEMENTARY AND ALTERNATIVE MEDICINES – MALAYSIA SCENARIO</td>
<td>48</td>
</tr>
<tr>
<td>Seetha Ramasamy</td>
<td></td>
</tr>
<tr>
<td>REGISTRATION OF HERBAL DRUGS IN EMA</td>
<td></td>
</tr>
<tr>
<td>Heidi Foth (Abstract is not available)</td>
<td></td>
</tr>
<tr>
<td>QUANTITATIVE ANALYSIS OF GENOTOXICITY DATA ON HERBAL PRODUCTS</td>
<td>49</td>
</tr>
<tr>
<td>Nan Mei et al.</td>
<td></td>
</tr>
<tr>
<td>HERBAL PRODUCTS: REGULATION AND SAFETY TESTING IN THAILAND</td>
<td>50</td>
</tr>
<tr>
<td>Rawiwan Maniratanachote and Paninee Chetprayoon</td>
<td></td>
</tr>
</tbody>
</table>

Symposium 5

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLICABILITY DOMAINS AND FUTURE OF NON-ANIMAL TESTS</td>
<td>52</td>
</tr>
<tr>
<td>Nicole C. Kleinstreuer</td>
<td></td>
</tr>
<tr>
<td>THE AFSA COLLABORATION: IMPLEMENTING ANIMAL-FREE SAFETY ASSESSMENT OF COSMETICS GLOBALLY</td>
<td>53</td>
</tr>
<tr>
<td>Catherine Willett</td>
<td></td>
</tr>
<tr>
<td>THE WAY FORWARD: THE EXPERIENCE AT CAAT</td>
<td>54</td>
</tr>
<tr>
<td>Thomas Hartung</td>
<td></td>
</tr>
<tr>
<td>IMMUNOTOXICOLOGY: A HISTORY OF A SUCCESS</td>
<td>55</td>
</tr>
<tr>
<td>Emanuela Corsini</td>
<td></td>
</tr>
</tbody>
</table>

Symposium 6

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE ESSENTIAL USE OF RODENT MODELS FOR TOXICOLOGICAL ENDPOINTS IN CANCER RESEARCH</td>
<td>57</td>
</tr>
<tr>
<td>Maria Lucia Zaidan Dagli</td>
<td></td>
</tr>
<tr>
<td>BRIDGING THE IN VITRO AND IN VIVO HISTOPATHOLOGICAL EVALUATION FOR THE PHARMACOSAFETY ASSESSMENT</td>
<td>58</td>
</tr>
<tr>
<td>John R Foster</td>
<td></td>
</tr>
<tr>
<td>COMPARATIVE PATHOLOGY OF THE TOXICITY OF DRUGS AND ENVIRONMENTAL CHEMICALS FOR HUMAN RISK ASSESSMENT: ARE RODENTS RELEVANT?</td>
<td>59</td>
</tr>
<tr>
<td>Jerrold M. Ward</td>
<td></td>
</tr>
<tr>
<td>A TOXICOLOGIST VIEW OF MODERN SAFETY ASSESSMENT</td>
<td>60</td>
</tr>
<tr>
<td>Wolfgang Dekant</td>
<td></td>
</tr>
</tbody>
</table>

Symposium 7

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVIRONMENTAL CHEMICALS AS RISK MODIFIERS FOR NON-ALCOHOLIC FATTY LIVER DISEASE</td>
<td>62</td>
</tr>
<tr>
<td>Juliane Beier</td>
<td></td>
</tr>
<tr>
<td>IMPACT OF MULTIDRUG RESISTANCE PROTEIN 4 (MRP4) FUNCTION ON HEPATIC LIPID ACCUMULATION</td>
<td>63</td>
</tr>
<tr>
<td>Jose E. Manautou and Ajay C. Donepudi</td>
<td></td>
</tr>
<tr>
<td>GENETIC SUSCEPTIBILITY TO NON-ALCOHOLIC FATTY LIVER DISEASE: ASIAN GENOME</td>
<td>-</td>
</tr>
<tr>
<td>Guruprasad Aithal (Abstract is not available)</td>
<td></td>
</tr>
<tr>
<td>INORGANIC NANO PARTICLES: IMPACT ON ENDOTHELIAL BIOLOGY LIVER FIBROSIS</td>
<td>64</td>
</tr>
<tr>
<td>Ho Han Kiat</td>
<td></td>
</tr>
</tbody>
</table>
Symposium 8

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDICAL DEVICES AND NON-ANIMAL METHODS FOR TOXICOLOGICAL RISK ASSESSMENT</td>
<td>66</td>
</tr>
<tr>
<td>Christian Pellevoisin</td>
<td></td>
</tr>
<tr>
<td>INTEGRATION OF THE 3RS ALTERNATIVES IN THE SAFETY TESTING FOR NANOTECHNOLOGIES</td>
<td>67</td>
</tr>
<tr>
<td>Sasitorn Aueviriyavit et al.</td>
<td></td>
</tr>
<tr>
<td>APPLYING ZEBRAFISH EMBRYO ACUTE TOXICITY TEST IN CHINA: STATUS AND PROSPECT</td>
<td>68</td>
</tr>
<tr>
<td>Zhenlie Huang et al.</td>
<td></td>
</tr>
<tr>
<td>CURRENT VIEWS ON THE 3RS ADAPTATION FOR THE SKIN SENSITIZATION TESTING</td>
<td>69</td>
</tr>
<tr>
<td>Takao Ashikaga</td>
<td></td>
</tr>
</tbody>
</table>

Forum

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A PORTFOLIO CAREER IN INDUSTRY AND ACADEMIA</td>
<td>71</td>
</tr>
<tr>
<td>Ruth A Roberts</td>
<td></td>
</tr>
<tr>
<td>EXPLORING IN SILICO TOXICOLOGY FROM A MALAYSIAN'S PERSPECTIVE: THE JOURNEY FROM EUROPE TO BACK HOME</td>
<td>72</td>
</tr>
<tr>
<td>Rozaini Abdullah</td>
<td></td>
</tr>
<tr>
<td>TRADITIONAL HERBAL POISONING IN VIETNAM</td>
<td>73</td>
</tr>
<tr>
<td>Uyen Vy Doan</td>
<td></td>
</tr>
<tr>
<td>MISUSE OF PRESCRIPTION DRUG IN SINGAPORE: AN INSIGHT FROM PUBLIC HEALTH</td>
<td>74</td>
</tr>
<tr>
<td>Chan Wui Ling</td>
<td></td>
</tr>
</tbody>
</table>

Workshop 1

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PESTICIDES: RISK ASSESSMENT, MANAGEMENT AND COMMUNICATION APPROACHES TO PROTECT HUMAN HEALTH (combined abstract)</td>
<td>76</td>
</tr>
<tr>
<td>UPDATE ON PESTICIDES EXPOSURE RISK ASSESSMENT FOR SPRAY OPERATORS IN THE FIELD CONDITION</td>
<td>-</td>
</tr>
<tr>
<td>Jeong Han Kim</td>
<td></td>
</tr>
<tr>
<td>VALUE OF THE STEWARDSHIP PRACTICES IN MINIMIZING THE PESTICIDE EXPOSURE TO SPRAY OPERATORS IN THE FIELD CONDITION</td>
<td>-</td>
</tr>
<tr>
<td>Yoji Hashino</td>
<td></td>
</tr>
<tr>
<td>FOOD SAFETY: DIETARY RISK ASSESSMENT, AN UPDATE ON PESTICIDES DIETARY RISK ASSESSMENT</td>
<td>-</td>
</tr>
<tr>
<td>M. Nazrul Fahmi A. Rahim</td>
<td></td>
</tr>
<tr>
<td>FOOD SAFETY: IMPORTANCE OF COMMUNICATION WITH KEY STAKEHOLDERS</td>
<td>-</td>
</tr>
<tr>
<td>Vasant L. Patil</td>
<td></td>
</tr>
</tbody>
</table>

Workshop 2

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGULATORY EXPECTATIONS FOR SUSTAINABLE CHEMICALS MANAGEMENT IN DEVELOPING COUNTRIES</td>
<td>78</td>
</tr>
<tr>
<td>Hazlina Yon and Mokhtar Sabtu</td>
<td></td>
</tr>
<tr>
<td>MANAGING TRADE BARRIERS THROUGH APPLICATION OF GLOBALLY HARMONIZED SYSTEM (GHS) TO PETROLEUM SUBSTANCES</td>
<td>79</td>
</tr>
<tr>
<td>Jessica Ryman-Rasmussen</td>
<td></td>
</tr>
<tr>
<td>UNITAR'S PERSPECTIVE ON THE EMERGING BEYOND 2020 FRAMEWORK AND WHAT IT MEANS FOR THE GHS AND PRTRS</td>
<td>80</td>
</tr>
<tr>
<td>Oliver Wootton</td>
<td></td>
</tr>
<tr>
<td>MANAGING ENVIRONMENTAL HEALTH IN THE OIL & GAS INDUSTRY</td>
<td>81</td>
</tr>
<tr>
<td>Nor Rahmah Nor Hashim</td>
<td></td>
</tr>
</tbody>
</table>
PART III: ABSTRACTS OF THE INVITED SPEAKERS ORAL PRESENTATIONS

Keynote 1 and Keynote 2

Kindly scroll/flip next few pages to view the selected abstract
THE BOTANICAL SAFETY CONSORTIUM: A PUBLIC-PRIVATE PARTNERSHIP TO ENHANCE THE BOTANICAL SAFETY TOOLKIT

Constance A. Mitchell¹, Joe Dever², Stefan Gafner³, James C. Griffiths⁴, Holly Johnson⁵, Daniel Marsman⁶, Cynthia Rider⁷, Cara Welch⁸, and Michelle R. Embry¹

*cmitchell@hesiglobal.org

ABSTRACT

Introduction:

The Botanical Safety Consortium (BSC) is a public-private partnership aimed at enhancing the botanical safety evaluation toolkit. This partnership is the result of a Memorandum of Understanding between the US Food and Drug Administration (FDA), the National Institutes of Health’s National Institute of Environmental Health Sciences (NIEHS), and the Health and Environmental Sciences Institute (HESI). The BSC serves as a global forum for scientists from government, academia, consumer health groups, industry, and non-profit organizations to work collaboratively on developing and integrating new methods based on sound science into routine botanical safety risk assessments.

Objective:

The objectives of the BSC are: to engage with a broad group of global stakeholders to leverage the best scientific safety approaches; establish the appropriate levels of chemical characterization for complex botanical substances; identify pragmatic, fit-for-purpose, in vitro and in silico assays to evaluate botanical safety; evaluate the application of these tools via comparison to the currently available safety information; and to integrate these tools and approaches into a framework that can facilitate robust evaluation of botanical substances.

Methods:

Initial endpoints of focus are genotoxicity, hepatotoxicity & ADME, developmental & reproductive toxicity, cardiotoxicity, neurotoxicity, and systemic toxicity. Additional working groups on chemical analysis and data analysis have also been initiated. The consortium also aims to work with global partners to educate and engage scientists about botanical safety. This presentation will provide an overview on the structure, goals, and strategies of this initiative.

Results and Discussion:

This presentation will provide an overview on the structure, goals, and strategies of this initiative, along with the initial data we have generated to date.

Keywords: Herbal, botanicals, in vitro, non-mammalian, supplements

References:

GLOBAL HARMONISATION: WORKING TOGETHER TO APPLY AND PROMOTE THE 3RS WITHIN TOXICITY ASSESSMENTS OF CHEMICALS AND PHARMACEUTICALS

FIONA SEWELL†*, BRIONY LABRAM†, AND HELEN PRIOR†

†UK NATIONAL CENTRE FOR THE REPLACEMENT, REFINEMENT AND REDUCTION OF ANIMALS IN RESEARCH (NC3RS), LONDON, UK

*Fiona.sewell@nc3rs.org.uk

ABSTRACT

Introduction:
Toxicity tests are conducted as part of safety assessment to determine whether chemicals pose a threat to human health or the environment. Though the overall assessment may include a variety of in vitro, ex vivo, and in silico approaches, the current testing paradigm relies heavily on tests in experimental animals. However, animals can be poor predictors of humans and environmental species, with scientists facing growing pressure to reduce the reliance on animal toxicity tests, whilst simultaneously improving the science and predictivity of safety assessment. One of the major hurdles to overcome is lack of global harmonisation, both in terms of current testing requirements and the activities involved in the investigation, validation and ultimate acceptance of techniques or approaches which may replace, reduce or refine (the 3Rs) the use of animals within toxicity studies. The regulatory environment is complex and specific requirements vary greatly depending on product type and use, and geographical region. This can mean that duplicate or very similar tests can be required to market the same product in different regions, and since most companies market their products worldwide, data packages often reflect the needs of the regulatory authority that requires the most data. As geographical regions are at different stages in reviewing requirements for animal testing and the acceptance of non-animal methods, even if only one region maintains a requirement for animal data, this limits any 3Rs benefits and increases effort.

Objective:
The NC3Rs aims to lead the discovery and application of new technologies and approaches that minimize the use of animals in research and improve animal welfare.

Methods:
The NC3Rs works collaboratively with industry and regulators worldwide to collect and share pre-competitive data between companies to build evidence-bases to support recommendations for change in practice or policy.

Results and Discussion:
Projects will be presented that have led to changes in international regulatory guidelines and/or recommendations for best practice study designs to minimise animal use within current regulatory frameworks: 1) the adoption of the one concentration approach for fish bioaccumulation studies within OECD Test Guideline TG305 and OCSP Test Guideline 850.1730; 2) the adoption of OECD Test Guideline TG433 a new and refined method for acute inhalation studies, which uses fewer animals and avoids lethality as an endpoint; 3) the removal of the requirement for acute oral toxicity studies within ICH guideline M3(R2) for pharmaceuticals; and 4) the use of recovery animals within first-in-human toxicology studies supporting pharmaceutical development.

Keywords: 3Rs, acute toxicity, bioaccumulation, recovery animals, global harmonization

References:
PART III: ABSTRACTS OF THE INVITED SPEAKERS ORAL PRESENTATIONS

Symposium 1

Kindly scroll/flip next few pages to view the selected abstract
ABSTRACT

Introduction:
An individual is always exposed to a multitude of chemicals from different sources at levels around or below the regulatory limits. Contrarily, chronic toxicity studies used to set the safety limits of chemicals are done only for single chemicals each time. Even if these levels obtained based on classic toxicity studies are considered safe, epidemiological studies showed the contrary; the long term-low dose exposure to many chemicals being implicated in the pathogenesis of many diseases.

Objective:
A new methodology with the ambition to investigate in the same animal experiment the long-term effects of low loss of non-commercial mixtures of xenobiotics at several endpoints was proposed.

Methods:
The effects of low, realistic doses of a combination of pesticides, food additives and lifestyle products additives in a long-term regiment for genotoxicity, endocrine disruption, organ toxicity and mechanistic pathways were evaluated. Male and female rats were exposed for 2 years to the test mixture in doses below or around to toxicological reference value (TRV). Changes in the blood and urine parameters, and neurobehavior were evaluated every 6 and 3 months, respectively. At the end of the study, the animals were sacrificed and histopathological evaluation was done.

Results and Discussion:
Non-monotonic effects at body weight gain, hepatotoxicity and induction of oxidative stress were observed after 6 and 12 months exposure to mixture of six pesticides and 7 food additives and lifestyle products additives in doses around and below the TRVs. After 18 months of exposure the effects become evident with structural changes at different organs, such as the stomach, liver, testes, kidney, lung and brain in both sexes. Genotoxic effects were observed only in female animals. Oxidative stress induction seems to play an important role in the observed changes. Followed up studies that added vitamin deficiency to long term low dose exposure to non-commercial pesticide mixture showed the association of the two stressors affects long term memory. Studies to provide more information on the long term low dose effects of exposure to chemical mixtures and how the results can be used to develop an integrated approach to testing and assessment in order to integrate in vivo findings using new technologies supporting the 3R concept for the evaluation of chemicals toxicity are under development.

Keywords: risk assessment, chronic exposure, toxicity, pesticides, real-life risk simulations

References:
COMPLEMENTARY AND ALTERNATIVE MODELS IN RISK ASSESSMENT: WHAT CAN WE LEARN FROM WORMS?

MICHAEL ASCHNER

DEPARTMENT OF MOLECULAR PHARMACOLOGY, ALBERT EINSTEIN COLLEGE OF MEDICINE, BRONX, NEW YORK, USA

ABSTRACT

Introduction:
Various alternative models have been suggested to diminish animal use in experimentation. These models afford an option for studies on nervous system function, metabolism, oxidative stress, aging, toxicity, including metal toxicity, disease models and drug discovery up to some levels. Each alternative model system has advantages and disadvantages, highlighting the necessity for many models to understand the complexity of each system. Benefits associated with these alternative approaches are time efficiency, reduced manpower, and cost-effectiveness. Besides, the ethical concerns impart limitations on the use of higher vertebrates, and, consequently, the use of alternative organisms has become a relevant alternative to vertebrates.

Objective:
The objective of this presentation is to highlight the utility of Caenorhabditis elegans (C. elegans) in assessing metal-induced neurotoxicity.

Methods:
C. elegans is a small free-living nematode that inhabits moist soils and uses bacteria as a food source. Under laboratory conditions, C. elegans is cultured on bacterial lawns grown on an agar substrate. The development from eggs to adults is in about 2.5 days, with a mean lifespan of around 20 days (20°C) and the adults can reach about 1mm in length. The majority of the animals are hermaphrodites (XX), generally about 300 offspring, but in a thousand individuals about one is male (XO).

Results and Discussion:
Due to many advantages Caenorhabditis elegans (C. elegans) has become a preferred model of choice in many fields, including neurodevelopmental toxicity studies. This review discusses the benefits of using C. elegans as an alternative to mammalian systems and gives examples of the uses of the nematode in evaluating the effects of major known neurodevelopmental toxins, including manganese, mercury, lead, fluoride, arsenic and organophosphorus pesticides. Reviewed data indicates numerous similarities with mammals in response to these toxins. Thus, C. elegans studies have the potential to predict possible effects of developmental neurotoxicants in higher animals, and may be used to identify new molecular pathways behind neurodevelopmental disruptions, as well as new toxicants.

Keywords: C. elegans, Manganese, Mercury, Neurodevelopment, Neurotoxicity, Pesticides

References:
Not applicable or not provided by author
THE APPLICATION OF BIG DATA AND MACHINE LEARNING IN RISK ASSESSMENT

THOMAS HARTUNG

JOHNS HOPKINS CENTER FOR ALTERNATIVES TO ANIMAL TESTING (CAAT), BLOOMBERG SCHOOL OF PUBLIC HEALTH, BALTIMORE, USA

*THartung@jhu.edu

ABSTRACT

Introduction:
A number of high-content and high-throughput technologies as well as the curation of databases of legacy data and scientific publications have made big data in toxicology available in recent years. Machine learning (artificial intelligence, A.I.) allows to mine these data and make “big sense” from these big data providing novel tools to complement risk assessments.

Objective:
Demonstrating the opportunities for A.I. in toxicology with a number of examples.

Methods:
We created a large toxicological databases from the European Chemical Agency (ECHA) extracting using linguistic search engines into a structured, machine readable and searchable database. Adding further public databases, a read-across-based structure activity relationship (RASAR) was developed. Predictions were validated by cross-validation. Other A.I. uses will be discussed.

Results and Discussion:
In collaboration with Underwriters Laboratories (UL), a global safety consulting and certification company, a database with more than 10 million chemical structures (more than 300,000 of which annotated with biological and chemophysical data and 80,000 with animal data). It took an Amazon cloud server two days to analyze the similarities and differences between the 10 million chemicals to place them on a map, where similar chemicals are put close to each other, dissimilar ones distant. Making use of 74 properties in a data fusion approach, random forest machine learning was applied in a five-fold cross-validation. Applying this to 190,000 classified chemicals based on animal tests, 87% of the time the computer was correct. Notably, each prediction comes with an expression of certainty based on the constellation of data available. The software was even better for finding toxic than non-toxic substances with 89% success—exceeding the 70 percent probability of animal tests to find a toxic substance again in a repeat animal test, shown in a parallel analysis of the database. The software (the UL Cheminformatics Tool Kit) at this stage predicts nine different hazard classifications, traditional testing for which consumes 57 percent of all animals in safety testing in Europe, or about 600,000 animals per year.

Keywords: 3Rs, alternative methods, machine learning, computational toxicology, artificial intelligence

References:
Symposium 2

Kindly scroll/flip next few pages to view the selected abstract
OVERVIEW OF THE APPROACH TO COMBINED EXPOSURES IN THE WHO SCREENING TOOL

M.E. (BETTE) MEEK1* AND KATHLEEN DE BROUWERE2

1MCLAUGHLIN CENTRE, UNIVERSITY OF OTTAWA, OTTAWA, CANADA, 2FLEMISH INSTITUTE FOR TECHNOLOGICAL RESEARCH (VITO), BRUSSELS, BELGIUM

*bmeek@uottawa.ca

ABSTRACT

Introduction:
The WHO-International Programme on Chemical Safety (IPCS) framework on risk assessment of combined exposure to multiple chemicals serves as the basis for development of a pragmatic screening tool for indoor air in public settings of children by WHO/Euro.

Objective:
To facilitate the consideration of co-exposures in assessing health risks to children in public settings in determining the need to refine evaluation and/or to introduce risk reduction measures.

Methods:
The screening tool comprises a database of supporting toxicological information for selected chemicals and adverse effects (endpoints) and a spreadsheet to calculate risk of combined exposures, based on specified decision rules.

Results and Discussion:
The terminology and approach adopted for the screening tool are consistent with those of the IPCS programme and those of WHO-IPCS framework and its application by WHO. The target audience for the screening tool is public health professionals, risk assessors at national, regional and local levels, and specialists involved in evaluating the quality of indoor air and promoting risk reduction measures in public settings for children. Balance of complexity to reduce uncertainty and ease of application for the target audience has guided the development of the screening tool. The tool addresses early Tiers (0 an 1) of the WHO-IPCS framework to reduce complexity and facilitate communication and application, modified to suit application to indoor air in public settings for children. A number of default adjustments is incorporated to facilitate application. Dose additivity of components of assessment groups is assumed; the current form of the screening tool does not address synergism or antagonism.

Keywords: exposure, chemicals, indoor air, combined risks, children

References:

THE SUPPORTING DATABASE: AN UPDATED RESOURCE OF INTERNATIONAL GUIDANCE VALUES

KATHLEEN DE BROUWERE1* AND M.E. (BETTE) MEEK2

1FLEMISH INSTITUTE FOR TECHNOLOGICAL RESEARCH (VITO), MOL, BELGIUM, 2MCLAUGHLIN CENTRE, UNIVERSITY OF OTTAWA, OTTAWA, CANADA

*Katleen.debrouwere@vito.be

ABSTRACT

Introduction:
A pragmatic screening tool for indoor air in public settings of children has been developed by WHO/Euro. A database of supporting hazarda data is one of the cornerstones of the tool.

Objective:
To develop a supporting database with toxicologically relevant information to support flexible application in the different tiers of the screening tool.

Methods:
The toxicological database was constructed using hierarchical searches on health based reference values and acceptable concentrations, and points of departure for inhalation for 5 health endpoints considered most relevant in WHO consultations supporting the development of the screening tool (effects on the respiratory system, effects on the nervous system, effects on the cardiovascular system, eye and respiratory irritation and carcinogenicity).

Results and Discussion:
The selection procedure resulted in a database containing health based references values and points of departure (LOAEL, NOAEL, BMD, TC) for inhalation for the 5 considered health endpoints of the chemicals prioritised in the WHO consultations for the tool development, including substances in the chemical families of aldehydes, aromatic hydrocarbons, terpenes, chlorinated hydrocarbons, esters, PAHs, and nitrogen dioxide. To facilitate assessment of combined exposure in Tier 1, chemicals were group based on evidence of similar endpoints/effects. Chemicals without BMD, LOAEL, NOAEL or TC, or only with NOAEL(s) for the highest test dose were excluded. The health based references and points of departure for the 5 health endpoints can be flexibly applied in the different tiers of tool to calculate risk indices, and to support the grouping of chemicals in the Tier 1 calculations.

Keywords: health based reference value, point of departure, chemicals, indoor air, grouping

References:
EXPOSURE ASSESSMENT TO SUPPORT THE SCREENING TOOL

IRINA ZASTENSKAYA1,*, FLORENTINA VILLANUEVA2, DOROTA JAROSINSKA3

1,3WHO EUROPEAN CENTRE FOR ENVIRONMENT AND HEALTH, BONN, GERMANY
2INSTITUTE FOR COMBUSTION AND ATMOSPHERIC POLLUTION, UNIVERSITY OF CASTILLA LA MANCHA, CASTILLA LA MANCHA SCIENCE AND TECHNOLOGY PARK, SPAIN

*zastenskayai@who.int

ABSTRACT

Introduction:
The exposure rate is calculated as the concentration of a chemical in an exposure medium multiplied by the rate at which a person inhales or ingests that medium, divided by their representative body weight. Exposure through inhalation is the concentration of a chemical inhaled during a specified exposure period which can be directly measured or modelled.

Objective:
To develop an approach to evaluation of exposure to chemicals in indoor air in public settings for children for calculating health risks using the screening tool.

Methods:
The approaches to sampling and estimation of combined exposures of children to chemicals in public spaces such as schools in the screening tool were recommended by international experts at consultations organized by WHO ECEH. Relevant considerations were quantitative characterization, reliability, relevance to long-term exposure and feasibility of sampling.

Results and Discussion:
Steps addressed relevant to assessment of exposure included selection of sampling sites of concern, appropriate sampling strategy and estimation of exposure. Long-term average exposures are considered most relevant for the characterization of risk in the screening tool. Continuous passive sampling, except of for benzo(a)pyrene, is recommended, relevant for long-term health hazards identified as priorities for inclusion in the screening tool and ease of implementation in public settings such as schools, kindergartens and day-care centres (24 hours per day, five days per week). There are no adjustments for intermittent to continuous exposure, due to the similarity of exposure patterns for many of the supporting toxicological data. Additional factors to address duration (variation in the design of exposure assessment in animal studies versus continuous passive monitoring in schools, potential greater susceptibility of children) are not incorporated to maximize simplicity in the application of the screening tool.

Keywords: exposure, chemicals, indoor air, combined risks, children

References:
Methods for sampling and analysis of chemical pollutants in indoor air. Supplementary publication to the screening tool for assessment of health risks from combined exposure to multiple chemicals in indoor air. Copenhagen: WHO Regional Office for Europe; 2020
APPLICATION OF THE SCREENING TOOL

TAMÁS SZIGETI*

NATIONAL PUBLIC HEALTH CENTER, BUDAPEST, HUNGARY

*szigeti.tamas@nnk.gov.hu

ABSTRACT

Introduction:
Children, one of the most vulnerable groups, spend considerable time in public settings. There is still an increasing concern on indoor air quality as, among others, occupants still complain about indoor air quality and report health symptoms. Guidelines have already been set in several countries for individual indoor air pollutants; however, the investigation of the combined effects is scarce due to its complexity.

Objective:
To calculate the health risk associated with the exposure to multiple air pollutants in primary school buildings using the screening tool developed by the World Health Organization.

Methods:
The results of the indoor air quality monitoring campaign carried out in primary school buildings across five Central European countries in the framework of the InAirQ project (Transnational Adaption Actions for Integrated Indoor Air Quality Management) were used for the pilot testing. Besides the default values, other compounds investigated in the project and new reference values were also added and used for the calculations.

Results and Discussion:
Considerable differences in the hazard index values (Tier 0) were apparent among the school buildings selected for the calculations. The highest hazard quotient values were obtained for nitrogen dioxide in all cases, except for one location where the concentration of nitrogen dioxide was not monitored. The results also revealed that the non-carcinogenic risk is not negligible for the respiratory system among the five selected priority health effects in many cases (Tier 1, level 1). Furthermore, the screening tool was used to calculate the adjusted point of departure index for the selected effects of interest (Tier 1, level 2). Health concern was indicated for different end-points (respiratory and neurological). Besides nitrogen dioxide, the highest concern was on benzene and formaldehyde in the classrooms based on the outcomes of the assessment. The outcomes of the calculations provide support to the public health experts, the decision makers and other stakeholders to identify the problems and to ensure a healthy school environment for children.

Keywords: children, environmental health, indoor air, monitoring campaign, risk assessment

References:
PART III: ABSTRACTS OF THE INVITED SPEAKERS ORAL PRESENTATIONS

Symposium 3

Kindly scroll/flip next few pages to view the selected abstract
THE 2020 UPDATE OF THE WHO GUIDELINES FOR POISON CONTROL

MARTIN F WILKS

SWISS CENTRE FOR APPLIED HUMAN TOXICOLOGY, UNIVERSITY OF BASEL, SWITZERLAND

*martin.wilks@unibas.ch

ABSTRACT

Introduction:
Poison centres (PCs) are important sources of specialized, multi-disciplinary expertise to enable the best care for patients experiencing health effects as a consequence of exposure to potentially toxic substances such as pharmaceuticals, substances of abuse, natural toxins, pesticides, household products and industrial chemicals. In order to support countries in establishing and strengthening PCs, the WHO produced guidelines in 1997 to provide policy and technical advice for setting up PCs and related facilities and recommend approaches for harmonized data recording.

Since the guidelines were first published, the roles and functions of PCs have evolved and information technology and means of communication have been transformed. The primary activity of a PC remains the provision of advice to health care professionals and members of the general public. This is usually done by telephone but, increasingly, web-based technologies are being used and some PCs have developed online resources for health care professionals in cases of common poisonings. The collection and analysis of incident-related data (toxicovigilance) is a further essential activity as it allows identification of the circumstances of poisonings, the populations at risk and the toxic agents most likely to be involved. Importantly, it may also allow detection of previously unidentified hazards. An increased emphasis on the role of PCs in surveillance, detection and response to public health events caused by chemicals is the focus of separate presentations in this symposium.

These developments, as well as the fact that many countries still lack access to PC services, have prompted a revision and update of the WHO guidance with the publication of the “Guidelines for Establishing a Poison Centre” in 2020. While retaining the general format of the earlier version, the Guidelines are much expanded and include new chapters on training, quality assurance and potential funding sources. The changed title suggests a particular emphasis on supporting countries and regions where PCs are yet to be established. However, the Guidelines also provide a state-of-the-art reference for PCs and clinical toxicology services worldwide.

Objective:
Not applicable or not provided by author

Methods:
Not applicable or not provided by author

Results and Discussion:
Not applicable or not provided by author

Keywords: WHO, Poison Centre, Guidelines

References:
RECENT DEVELOPMENTS IN THE PUBLIC HEALTH MANAGEMENT OF CHEMICAL INCIDENT: THE IMPORTANCE OF POISONS CENTRES IN ASSESSING RISKS TO PUBLIC HEALTH

RAQUEL DUARTE-DAVIDSON

CENTRE FOR RADIATION, CHEMICALS AND ENVIRONMENTAL HAZARDS, PUBLIC HEALTH ENGLAND, HARWELL SCIENCE AND INNOVATION PARK, CHILTON, UK

Raquel.Duarte@phe.gov.uk

ABSTRACT

Introduction:
The recent publication of the WHO Guidelines for poison control, entitled Guidelines for Establishing a Poison Centre, provides an update of the 1997 version and reflects the development of the role of poison centres in public health and the sound management of chemicals.

Objective:
This presentation will provide an overview of the role that poison centres provide in managing chemical incident response and supporting public health, including the role they play in supporting alerting and toxicovigilance.

Methods:
Not applicable or not provided by author.

Results and Discussion:
Assessments carried out under the IHR show continuing gaps in capacity for managing chemicals. The guidelines describe the role of poison centres in toxicovigilance and the prevention of poisoning and their role in preparedness and response to chemical incidents. The presentation also provides examples that highlight how poison centres and public health authorities work together to improve public health response to chemical incidents.

Keywords: Poison Centre, WHO Guidelines for poison control, public health, toxicovigilance, chemical incident management

References:
Not applicable or not provided by author.
EMERGENCY RESPONSE PREPAREDNESS FOR CHEMICAL INCIDENTS

HAIDAR RIZAL TOHA

JOHOR STATE DEPARTMENT OF HEALTH, PUBLIC HEALTH DIVISION, JOHOR BAHRU, JOHOR, MALAYSIA

drhaidar@moh.gov.my

ABSTRACT

Introduction:
Hazardous industrial chemicals whether in the raw or waste form can lead to environmental pollution if improperly handled. Among the most heinous wrongdoing is deliberate discarding of toxic waste as it can unnecessarily cause ill health effects to the humans in the vicinity of the dumping site thus requiring a rapid medical response. Such an incident had occurred in the State of Johor, Malaysia in the year 2019 where approximately 2.34 tons of toxic chemicals had been dumped into Kim Kim river in Pasir Gudang, Johor that caused a state of emergency requiring extensive resource mobilization.

This talk would highlight the existing disaster response mechanism from the facet of public health and its application during the crisis. Important events that happened during the response phase of the disaster include the offending chemicals identification, medical response mobilization, health protection response and pollution control measures will be elaborated. Post-crisis activities in the recovery and mitigation phase of the chemical incident include steps towards local policy change, further research and public empowerment for future event actions.

Objective:
Not applicable or not provided by author

Methods:
Not applicable or not provided by author

Results and Discussion:
Not applicable or not provided by author

Keywords: Pasir Gudang, Kim Kim river, emergency response preparedness

References:
Not applicable or not provided by author
ABSTRACT

Introduction:
Since 2005 the International Health Regulations (IHR), agreed by countries and published by the World Health Organization (WHO), have covered all diseases and events of international public health concern, including those linked to biological, chemical and radiation hazards. This presentation will describe the core capacities required for responding to chemical incidents according to the IHR (2005) and will present some examples of incidents of international public health concern.

The presentation will also describe how the core capacities for responding to chemical incidents are evaluated and the WHO guidance which is available for this, along with more general guidance on the public health management of chemical incidents. Chemical incidents in this context includes industrial and transport accidents, which may in some circumstances constitute a public health emergency of international concern, and also natural-hazard-triggered technological events (‘Natech’ events). WHO publications which describe these different types of events and their management will be presented.

Objective:
Not applicable or not provided by author

Methods:
Not applicable or not provided by author

Results and Discussion:
Not applicable or not provided by author

Keywords: WHO, Natech, International Health Regulations

References:
https://www.who.int/publications/i/item/9789241580496
PART III: ABSTRACTS OF THE INVITED SPEAKERS ORAL PRESENTATIONS

Symposium 4

Kindly scroll/flip next few pages to view the selected abstract
UNPREDICTABLE ADVERSE EFFECTS OF HERBAL PRODUCTS

NURSEN BASARAN1* AND A. AHMET BASARAN2

1DEPT. TOXICOLOGY, FACULTY OF PHARMACY, HACETTEPE UNIVERSITY, TURKEY, 2DEPT. PHARMACOGNOSY, FACULTY OF PHARMACY, BASKENT UNIVERSITY, ANKARA, TURKEY

*nbasaran@hacettepe.edu.tr

ABSTRACT

Introduction:
Herbal products are being increasingly used all over the world for preventive and therapeutics purposes because of the belief of their safety being natural. However, as herbal products contain many bioactive components, the lack of sufficient study on their efficacy and toxicity, inadequate controls of their availability reduce their safety.

Objective:
To discuss in detail the unpredictable adverse effects of herbal products due to possible ineractions with drugs and due to the adulteration and contamination of herbal products with prohibited chemicals.

Methods:
Not applicable or not provided by author

Results and Discussion:
Unlike conventional drugs, herbal products are not regulated for purity and potency. Herbal products contain substances which can induce or inhibit enzymes that can take part in drug metabolism. Therefore the concurrent use of drugs with some medicinal plants can cause serious adverse effects and also decrease the efficacy of the therapy. Particularly, drugs with narrow therapeutic index (warfarin, digoxin, etc.), and many plants which affect drug metabolizing enzymes (Hypericum perforatum, Panax ginseng, Ginkgo biloba, Ephedra etc.) when used together, may lead to unpredictable adverse reactions. Patients with chronic diseases who also use herbal medicines must consider the adverse effects and interactions between these substances. Some of the adverse effects reported for herbal products could be caused by impurities. On the other hand, herbal adulteration, which is described as intentional substitution with another plant or a drug to increase the potency of the product, is one of the common malpractices in herbal raw-material trade. In order to prevent undesirable effects and drug-herbal drug interactions, it is important to have more information and patients using herbal products must consult with their physicians and pharmacists.

Keywords: herbal products, adverse reactions, interactions, adulteration

References:
ABSTRACT

Introduction:
Control of drugs and cosmetic regulation was promulgated in 1984 where all products must be registered before it is placed on the Malaysian market. Hence pre-market approval was implemented in phases beginning with registration of prescription drugs in 1985, followed by OTC, Health Supplements and traditional medicine. National Pharmaceutical Regulatory Agency (NPRA) as the secretariat to the Drug Control Authority (DCA) was given the task of ensuring the quality, safety and efficacy of these products through the registration, inspection and licensing scheme. The requirement for registration were updated regularly following local and international standards.

Objective:
To share on the current regulatory control of Complementary and Alternative Medicine in Malaysia

Methods:
Not applicable or not provided by author

Results and Discussion:
Not applicable or not provided by author

Keywords: complementary medicine, regulatory control

References:
QUANTITATIVE ANALYSIS OF GENOTOXICITY DATA ON HERBAL PRODUCTS

NAN MEI1*, XILIN LI1, XIAOQING GUO1, TAO CHEN1, SI CHEN1 AND LEI GUO2

1DIV. GENETIC AND MOLECULAR TOXICOLOGY, 2DIV. BIOCHEMICAL TOXICOLOGY, NATIONAL CENTER FOR TOXICOLOGICAL RESEARCH, U.S. FOOD AND DRUG ADMINISTRATION, JEFFERSON, USA

*nan.mei@fda.hhs.gov

ABSTRACT

Introduction:
Applied genotoxicity methods are changing from qualitative hazard identification to quantitative risk assessment. Quantitative analysis with point of departure (PoD) metrics and benchmark dose (BMD) modeling have been applied to in vivo or in vitro genotoxicity data. Two studies as examples of quantitative analysis of genotoxicity data obtained from herbal products are discussed.

Objective:
To quantitatively evaluate genotoxicity of direct mutagens, herbal dietary supplements, industrial compounds, cosmetic and retail products ingredients, and tobacco products by BMD modeling.

Methods:
Aristolochic acids (AA) are a group of structurally-related nitrophenanthrene carboxylic acids found in many plants, widely used by many cultures as traditional herbal medicines. AA is the causative agent for Chinese herbs nephropathy, also known as aristolochic acid nephropathy (AAN). AA is nephrotoxic, genotoxic, and carcinogenic in humans. A series of genotoxicity and toxicogenomic studies in rats exposed to AA for 12 weeks were conducted.

Results and Discussion:
AA treatments induced DNA adducts and mutations in the kidney, liver, and spleen of rats, and significant alteration of gene expression in both its target and non-target tissues. BMD modeling on the 3-month AA-induced genotoxicity data showed BMDL_{10} for AA-induced mutations in the kidney of rats was about 7 µg/kg body weight per day. Pyrrolizidine alkaloids (PAs) and their corresponding PA N-oxides are a class of phytochemicals found in over 6,000 plant species. Humans may be exposed through the consumption of herbal products containing PAs. Recently, we identified specific CYPs responsible for bioactivating three PAs – lasiocarpine, riddelliine, and senkirkine; and demonstrated that PAs induced concentration-dependent increases in micronuclei in three CYP3A variant-expressing TK6 cell lines. BMD modeling demonstrated that lasiocarpine, of the three PAs, was the most potent inducer of micronuclei, with a BMDL_{100} of 0.036 µM. Thus, BMD modeling is useful for quantitative evaluation of in vivo and in vitro genotoxicity data.

Keywords: genotoxicity, benchmark dose, aristolochic acids, pyrrolizidine alkaloids

References:
HERBAL PRODUCTS: REGULATION AND SAFETY TESTING IN THAILAND

RAWIWAN MANIRATANACHOTE1* AND PANINEE CHETPRAYOON1

1TOXICOLOGY AND BIO EVALUATION SERVICE CENTER (TBES), NATIONAL SCIENCE AND TECHNOLOGY DEVELOPMENT AGENCY (NSTDA), 111 THAILAND SCIENCE PARK, PATHUM THANI 12120, THAILAND

*rawiwan.man@nstda.or.th

ABSTRACT

Introduction:
Thailand has a wide variety of natural resources, herbs and plants that are used as raw materials for many products. As the trend of health care and disease prevention through natural ways continue to increase, herbal products attract much attention. The products from herbs can be produced in the form of herbal medicines, dietary supplements and health care products, using technology and innovation to increase efficacy and safety.

Objective:
Not applicable or not provided by author

Methods:
Not applicable or not provided by author

Results and Discussion:
This presentation will share the latest information on the regulation of herbal products in Thailand. According to a gap in the product value chain, it is imperative to assist and promote the manufacturers of herbal products in various aspects, including research and development, testing of efficacy and safety, with cooperation from multiple departments to ensure that the products are qualified for registration and release to the market. The talk will also address testing capabilities, covering experimental design of efficacy testing related to the product health claims, and in vitro pre-clinical safety testing based on the OECD test guidelines that meet the requirement of international standards.

Keywords: herbal products, regulation, safety testing, efficacy testing, OECD test guidelines

References:
Not applicable or not provided by author
PART III: ABSTRACTS OF THE INVITED SPEAKERS ORAL PRESENTATIONS

Symposium 5

Kindly scroll/flip next few pages to view the selected abstract
APPLICABILITY DOMAINS AND FUTURE OF NON-ANIMAL TESTS

NICOLE C. KLEINSTREUER

NATIONAL TOXICOLOGY PROGRAM INTERAGENCY CENTER FOR THE EVALUATION OF ALTERNATIVE TOXICOLOGICAL METHODS, NIEHS

nicole.kleinstreuer@nih.gov

ABSTRACT

Introduction:
The Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) is made up of representatives from US federal agencies that require or consider chemical safety testing data, and are interested in more rapid, human-relevant approaches to supplement or replace existing regulatory standard in vivo guideline tests. The National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) provides scientific and administrative support to ICCVAM through a variety of efforts including methods development and validation, construction of computational tools, communication and outreach, and stakeholder engagement, all driven by federal agency priorities and decision contexts. This talk will provide an overview of ICCVAM and NICEATM’s progress in developing, evaluating, and implementing alternatives to animal testing. Emphasis will be on implementation of the ICCVAM strategic roadmap, ongoing efforts to replace the “six-pack” of acute toxicity tests, and development of computational resources such as in vitro to in vivo extrapolation workflows, toxicity and property prediction models, and chemical characterization tools.

Objective:
This talk will provide an overview of ICCVAM and NICEATM’s progress in developing, evaluating, and implementing alternatives to animal testing.

Methods:
Emphasis will be on implementation of the ICCVAM strategic roadmap, ongoing efforts to replace the “six-pack” of acute toxicity tests, and development of computational resources such as in vitro to in vivo extrapolation workflows, toxicity and property prediction models, and chemical characterization tools.

Results and Discussion:
Not applicable or not provided by author

Keywords: ICCVAM, six pack acute toxicity tests, NICEATM, non-animal tests

References:
Not applicable or not provided by author
THE AFSA COLLABORATION: IMPLEMENTING ANIMAL-FREE SAFETY ASSESSMENT OF COSMETICS GLOBALLY

CATHERINE WILLETT
HUMAN SOCIETY INTERNATIONAL

*kwillett@hsi.com

ABSTRACT

Introduction:
To achieve animal-free safety assessment of cosmetics globally, it is important to harmonize legislation and regulations to allow flexibility in safety assessment approaches. In addition, it is important to enable local capacity in safety assessment using data generated from non-animal approaches, including in silico, in vitro, and human-based data.

Objective:
Provide an overview of an international collaboration to achieve safety assessment of cosmetics without the need for animal testing globally in the near future.

Methods:
A large collaboration was formed between Humane Society International, global industrial partners, non-governmental groups and other key stakeholders to facilitate regulatory change in 40 key markets and to build an education and training program allowing all relevant stakeholders to assess the safety of cosmetics without the need for new animal testing. Partner subject matter experts collaborated on development of detailed educational content covering the entire risk assessment process, delivered in 8 overlapping modules, organized around learning objectives and outcomes.

Results and Discussion:
The program covers the risk assessment process as follows: beginning with problem formulation, including gathering and evaluating all existing data and initial hypothesis generation. Maximizing the use of existing data includes applying History of Safe Use Principles. Safety assessment of cosmetics is necessarily exposure-led, so a first step is estimating consumer exposure, followed by analysing the potential for exposure-based waiving of toxicological tests. In silico tools are used as a first pass to characterize physical, chemical and biological properties of the ingredients, and explore possibilities for read-across to similar, well-characterized substances. If necessary, information from various in vitro tests can be combined to provide information on and in some cases, points of departure for, local or systemic toxicity. Also if necessary, in vitro and in silico information can be used to estimate internal exposure, and to relate in vitro and in vivo concentrations. Finally, all of this information is combined in a risk assessment of the particular product for the particular use scenario with a level of certainty necessary for a final risk decision.

Keywords: animal-free, risk assessment, cosmetics, in silico, in vitro, margin-of-exposure

References:
THE WAY FORWARD: THE EXPERIENCE AT CAAT

THOMAS HARTUNG

JOHNS HOPKINS CENTER FOR ALTERNATIVES TO ANIMAL TESTING (CAAT), BLOOMBERG SCHOOL OF PUBLIC HEALTH, BALTIMORE, USA

*THartung@jhu.edu

ABSTRACT

Introduction:
Increasingly, the limitations of animal-based toxicology, as well as the shortcomings of traditional cell culture to predict human health threats are recognized. The increasing pace of technological developments of modern cell culture, computational methods and their integration leads to “disruptive technologies”, which benefits the development of alternatives for safety assessment.

Objective:
Describing the opportunities for a scientific revolution in toxicology and the relevant CAAT programs to promote this.

Methods:
The creation of large toxicological databases (“big data”) and data-mining technologies (“artificial intelligence”) allow predictive computational approaches on a new scale. The combination of cell culture with bioengineering has led to many technologies for more organotypic cell culture, such as 3D culture, human stem cell-derived systems, perfusion, co-cultures, combinations with scaffolds and sensors, leading to “organ-on-chip” or even multi-organ “human-on-chip” solutions.

Results and Discussion:
By recreating organ architecture, homeostasis of the cell environment and organ functionality, these models mirror more closely the physiological situation. The example of our human iPSC-derived mini-brain is used to illustrate this. The commercial availability of organoids also improves standardization and reproducibility. Computational methods based on A.I. match or outperform already a number of animal tests. Such technological advances promise to be real “game-changers”. Combined with an increased mechanistic base of reasoning (e.g. Adverse Outcome Pathway concepts), Integrated Testing Strategies and evidence-based methods of data evaluation and integration, a revolutionary change for how we assess the biological effects of substances has been set into motion. A number of CAAT programs support these developments and their implementation.

Keywords: 3Rs, alternative methods, microphysiological systems, computational toxicology, evidence integration

References:
IMMUNOTOXICOLOGY: A HISTORY OF A SUCCESS

EMANUELA CORSINI

LABORATORY OF TOXICOLOGY, UNIVERSITA DEGLI STUDI DI MILANO, MILAN, ITALY

*Emanuela.corsini@unimi.it

ABSTRACT

Introduction:
A well-functioning immune system is essential for maintaining the integrity of an organism. Due to its late developing in life, continuous renewal, and delicate control of the balance between activation, silencing and regulation of immune reactivity after each pathogen attack, as well as during immunosurveillance, the immune system is highly vulnerable to chemical or physical insults. Exposure to immunotoxic compounds can have serious adverse health consequences affecting responses to both communicable and non-communicable diseases. It is therefore important to understand the immunotoxic potential of xenobiotics and the risk they pose to humans. Several in vitro methods have been validated and adopted worldwide for the identification of contact allergy, methods addressing chemical-induced immunosuppression will be available soon.

Current in vivo models do not always provide a mechanistic understanding of the data, whereas molecular mechanisms may be easier to evaluate using in vitro methods. It is likely that several in vitro assays will be required to define immunotoxicants because of the different components of the immune system and its influences on other systems. Thus, a tiered approach is the most appropriate means to assess immunotoxicity even in vitro. While it is clear that more studies are needed to define the possibility of identifying immunotoxic substances without the use of animals, the road has been paved for the use of testing strategies which together will be able to adequately predict the immunotoxic action of chemicals in vitro. This presentation aims to present and discuss the application and interpretation of in vitro immunotoxicity assays, mainly covering immunosuppression, and to define a tiered approach to testing and assessment.

Objective:
Not applicable or not provided by author

Methods:
Not applicable or not provided by author

Results and Discussion:
Not applicable or not provided by author

Keywords: Not applicable or not provided by author

References:
Not applicable or not provided by author
PART III: ABSTRACTS OF THE INVITED SPEAKERS ORAL PRESENTATIONS

Symposium 6

Kindly scroll/flip next few pages to view the selected abstract

© Malaysian Society of Toxicology, 2021. All rights are reserved.
THE ESSENTIAL USE OF RODENT MODELS FOR TOXICOLOGICAL ENDPOINTS IN CANCER RESEARCH

MARIA LUCIA ZAIDAN DAGLI

SCHOOL OF VETERINARY MEDICINE AND ANIMAL SCIENCE, UNIVERSITY OF SAO PAULO, BRAZIL

mlzdagli@usp.br

ABSTRACT

Introduction:
Rodent models have been used for cancer research since the end of 19th century and beginning of the 20th century. The most used conventional models are the transplantable tumors, like the Ehrlich ascitic tumor and B16 melanoma; chemical carcinogenesis models, like the DMBA model in the skin of mice; hepatocarcinogenesis models in rats and mice, lung, mammary, intestinal and others. These models have been used for many years as tools to answer relevant questions in cancer research and for the testing of new product safety and efficacy. A new era of cancer research using rodent models started from 1970’s onwards. The possibility of manipulating the mouse genome creating the genetically modified models, replacing gene sequences by non functional ones, or inserting new sequences or multiple copies of genes, knockout models and transgenic models, were launched, and since then allow the understanding of the role of genes in vivo. For cancer research, many animal models have been used. Immunodeficient mice, like SCID, NOD-SCID and others have been used to create the “Avatar Mice”, which are xenotransplanted with human tumors. These are important to test personalized new therapies. Humanized mouse models have been widely used in studies of human gene function, immuno-oncology therapeutics, infectious disease pathology and also preclinical drug evaluation. Many genetically modified (GEM) or genetically edited (CRISPR) mouse models are available and they can be used to understand the pathogenesis of selected cancers and the potential therapeutic approaches.

Objective:
The aim of this talk is to present the essential use of rodent models for toxicological endpoints in cancer research.

Methods:
Examples of the use of rodent models for the study of new antineoplastic or chemopreventive products in vivo, as well as the use of animal models for toxicological endpoints will be presented, with a brief description of the experimental procedures. Ethical aspects will be shown.

Results and Discussion:
Although alternative models are being produced, rodent models are still necessary for some toxicological endpoints in cancer research.

Keywords: rodent, cancer, model, CRISPR, toxicologic pathology

References:
BRIDGING THE IN VITRO AND IN VIVO HISTOPATHOLOGICAL EVALUATION FOR THE PHARMACO SAFETY ASSESSMENT

JOHN R FOSTER

TOXPATH SCIENCES LTD., CONGLETON, CHESHIRE, CW12 4JA, UNITED KINGDOM

John.r.foster@btinternet.com

ABSTRACT

Introduction:
The concepts introduced through the TOX21 and RISK21 initiatives the US National Academy of Sciences has been a spur to the increased investigation of alternative, non-animal, approaches to the safety assessment of novel drugs and chemicals.

Objective:
The presentation reviews the contribution that “non-whole animal” approaches can make to the safety assessment of novel drugs and if, and how they might complement, or even replace, more conventional toxicity studies using animals, to enable safe human clinical trials.

Methods:
Not applicable or not provided by author

Results and Discussion:
Before any drug is administered to human beings, both the efficacy and safety has first to be proven through the conduct of animal, and non-animal, approaches including in vitro, in silico, and in vivo approaches. Efficacy studies have traditionally involved a multidisciplinary mix of these approaches and considerable variability in approach occurs between different companies and laboratories. In contrast, establishing the safety of a novel product, and defining its toxicity, has followed a much more prescribed pathway set down by internationally accepted guidelines such as those of the OECD. Goals, set out by the US National Research Council’s TOX21 initiative, were to better utilise the newly developed technologies, and move away from the current reliance on animal toxicity testing, in ensuring human safety. While the new technologies have, for many years, been wholeheartedly embraced in establishing efficacy of a novel product, their impact in establishing safety has been minimal. This is understandable because of the conservative nature of the industry, and global drug regulatory agencies continue to request animal studies to support “first in man” and subsequent clinical phase studies.

Keywords: RISK21, TOX21, histopathology, safety, species extrapolation, risk

References:
COMPARATIVE PATHOLOGY OF THE TOXICITY OF DRUGS AND ENVIRONMENTAL CHEMICALS FOR HUMAN RISK ASSESSMENT: ARE RODENTS RELEVANT?

JERROLD M. WARD
GLOBAL VETPATHOLOGY
*Globalvetpathology@gmail.com

ABSTRACT

Introduction:
Rodents are used in basic and translational research to assist in commercial product development and national government regulation, including for drugs, foods, agricultural and other chemicals, and in assaying health effects of the environment. Pathology is an important endpoint in this research. Some rodent toxicology and carcinogenesis research studies have been criticized for lack of relevance to humans, especially for human risk assessment.

Objective:
This presentation will review similarities and differences of toxicological and other responses of humans and rodents to these substances.

Methods:
Not applicable or not provided by author

Results and Discussion:
Human and rodents share many similarities in their anatomy and histology of organs and other tissues. The general structure, function and physiology of most tissues are often identical if not similar. Responses to exposure to infectious agents, chemicals, natural products, including foods are often similar but can be modified by genetic and environmental factors, even in the same species. The genetic research on mice has shown many genes that effect responses to chemicals with relevance to humans. This presentation will review the similarities and differences in the pathological responses of human and rodent tissues to chemicals. When differences are found, they must be taken into consideration for human risk assessment, used for regulation of chemicals which are drugs, other commercial products and environmental chemicals. Potential differences in the carcinogenic responses may be considered by analysis of the mode of action for chemicals causing the tumors in rodents. Although many of the human carcinogens also cause tumors in rodents, there are many more rodent carcinogens than those in humans, especially of the nongenotoxic type. Weight of the evidence must be used for assessing human risk to rodent carcinogens.

Keywords: pathology, chemicals, humans, rodents, mode of action

References:
A TOXICOLOGIST VIEW OF MODERN SAFETY ASSESSMENT

WOLFGANG DEKANT

DEPARTMENT OF TOXICOLOGY, UNIVERSITY OF WUERZBURG, GERMANY

dekant@toxi.uni-wuerzburg.de

ABSTRACT

Introduction:
Safety assessment of chemicals has gained a large importance and is required for all uses of chemicals.

Objective:
The presentation will cover the basic principles of safety assessment and the issues arising for their applications.

Methods:
Not applicable or not provided by author

Results and Discussion:
Modern safety or risk assessment relies on two basic pillars, assessment of exposures and assessment of the hazard or intrinsic toxicity of a chemical. While detailed procedures for hazard assessment have been developed and are covered by specific guidance in many legislations, exposure assessment in many cases is based on conservative assumptions of human behavior. More detailed exposure assessments based on use or consumption behavior of items releasing such chemicals are usually only available for large production chemicals. Therefore, improved information on actual exposures is considered a crucial point for further development.

Keywords: hazard assessment, exposure assessment, risk assessment, chemical toxicity

References:
Not applicable or not provided by author
PART III: ABSTRACTS OF THE INVITED SPEAKERS ORAL PRESENTATIONS

Symposium 7

Kindly scroll/flip next few pages to view the selected abstract
ENVIRONMENTAL CHEMICALS AS RISK MODIFIERS FOR NON-ALCOHOLIC FATTY LIVER DISEASE

JULIANE I BEIER

1DEPARTMENT OF MEDICINE, DIVISION OF GASTROENTEROLOGY, HEPATOLOGY & NUTRITION, 2PITTSBURGH LIVER RESEARCH CENTER, 3DEPARTMENT OF ENVIRONMENTAL & OCCUPATIONAL HEALTH; UNIVERSITY OF PITTSBURGH, PITTSBURGH, PA 15213, USA

*toxicity@toxicology.com

ABSTRACT

Introduction:
Vinyl chloride (VC), a common environmental pollutant, directly causes liver injury at high exposure levels. Lower concentrations, which do not overtly damage the liver, enhance injury caused by high fat diet (HFD), at least in part, via mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Mitochondria and the ER interact with each other, and are sensitive to (patho)physiological conditions and maladaptive changes.

Objective:
The purpose of the current study was to investigate the mechanistic impact of VC on ER-mitochondria interactions.

Methods:
C57Bl/6J mice were exposed to VC below the current OSHA standard (<1 ppm), or room air for 6 hrs/d, 5 d/wk for up to 12 wks. Mice were fed HFD, or low-fat control diet (LFD). Plasma and liver samples were collected for determination of injury and mitochondria were isolated for analysis of mitochondrial (dys)function.

Results and Discussion:
VC exposure exacerbated liver injury caused by HFD and ER stress. VC exposure also dysregulated energy homeostasis and impaired mitochondrial function – even in the absence of HFD. Evidence for impaired mitochondrial function included dramatic structural changes to the mitochondria, impaired hepatic mitochondrial electron transport chain function and a decrease in maximum mitochondrial respiratory capacity, while fatty acid oxidation and mitochondrial DNA content were unaffected. VC also changed hepatic protein levels of several mitochondrial-associated ER membrane proteins, which are involved in mitochondrial function, and quality control of ER-mitochondrial crosstalk. Taken together, VC dysregulates mitochondrial and ER function, dynamics and interaction. These stress responses therefore play a causative role in VC-mediated liver toxicity and sensitization to other stressors. Importantly, these data raise concerns about potential overlap between diet and VC and emphasize that current safety restrictions may be insufficient to account for other factors that can influence hepatotoxicity in humans.

Keywords: organochlorines, TASH, liver disease, hepatotoxicity, mitochondrial maladaptation

References:
Not applicable or not provided by author.
IMPACT OF MULTIDRUG RESISTANCE PROTEIN 4 (MRP4) FUNCTION ON HEPATIC LIPID ACCUMULATION

JOSE E. MANAUTOU AND AJAY C. DONEPUDI

DEPARTMENT OF PHARMACEUTICAL SCIENCES, UNIVERSITY OF CONNETICUT, USA

*jemanautou@uconn.edu

ABSTRACT

Introduction:
Hepatic transporters are important determinants of drug pharmacokinetics and drug-induced liver toxicity (DILI). The expression of drug transporters, such as the multidrug resistance-associated protein 4 (Mrp4), is known to be altered in response to DILI. Induction of Mrp4 is observed in hepatocytes undergoing proliferation.

Objective:
Given these findings, we hypothesized that Mrp4 function is important for hepatocyte proliferation and that lack of Mrp4 prevents liver regeneration following partial hepatectomy (PH) in mice.

Methods:
In this study, we performed PH surgery on male wildtype and Mrp4 knockout mice. Plasma and liver tissues were collected at various time points after surgery and evaluated for liver injury and liver regeneration endpoints, and for PH-induced hepatic lipid accumulation.

Results and Discussion:
Our results show that lack of Mrp4 did not alter hepatocyte proliferation and liver injury following PH. However, an unexpectedly, Mrp4 knockout mice exhibited significant increases in hepatic di- and triglyceride content. Gene expression analysis showed that lack of Mrp4 is associated with altered expression of various genes involved in lipid synthesis and metabolism. Further studies showed that the lack on Mrp4 promotes adipogenesis and adipogenic gene expression, both in vitro and in vivo. Indirect calorimetric analysis and measurement of various metabolic endpoints indicate that Mrp4 knockout mice exhibit a metabolic syndrome phenotype. Overall, our observations indicate that lack of Mrp4 leads to pronounced PH-induced hepatic steatosis in mice and also suggest that Mrp4 is be a novel genetic factor in the development of hepatic steatosis and metabolic syndrome.

Keywords: partial hepatectomy, drug transporters, Mrp4, steatosis

References:
ABSTRACT

Introduction:
Nanoparticles exhibit a natural tendency for liver accumulation. While this may impose toxicological concerns, the phenomenon presents opportunity for liver targeting, as an exploit to address chronic liver diseases.

Objective:
To advance our understanding in the area of non-alcoholic fatty liver disease, especially on the impact of inorganic nanoparticles on endothelial biology and liver fibrosis.

Methods:
Pharmacological effects of nanoparticles, such as titanium oxide were investigated in hepatic stellate cells, as well as in liver sinusoid endothelial cells.

Results and Discussion:
With the use of inorganic nanoparticles like titanium dioxide, we have observed an unexpected pharmacological effect in reversing fibrosis, using hepatic stellate cells as a model system. It suppresses the signature of fibrogenesis in terms of α-SMA expression and the deposition of collagen. It also modulates fibrolytic action of matrix metalloproteases. Separately, the same nanoparticles are able to alter endothelial biology leading to enhanced cell leakiness. This effect can help to restore sinusoidal permeability in cases of occlusion due to extensive fibrosis. Taken together, inorganic nanoparticles can exhibit distinct pharmacological activity on different liver cell types, thereby advancing its application in nanomedicine beyond their known capacities as drug carriers.

Keywords: non-alcoholic fatty liver disease, nanoparticles, stellate cells, fibrosis, nanomedicine

References:
PART III: ABSTRACTS OF THE INVITED SPEAKERS ORAL PRESENTATIONS

Symposium 8

Kindly scroll/flip next few pages to view the selected abstract
ABSTRACT

Introduction:
The safety of any medical device is strictly evaluated before being marketed. The ISO 10993-1:2018 standard provides a framework for conducting this evaluation and performing the necessary tests as part of a risk management process. In addition to the chemical analysis, 3 endpoints must always be considered: cytotoxicity, irritation and sensitization.

While ISO 10993-5 has recommended in vitro tests for cytotoxicity since its inception in 1992, irritation has been assessed by in vivo tests until very recently. This is no longer the case with the recent publication of ISO 10993-23:2021, which requires the evaluation of this endpoint by in vitro methods on reconstructed human skin (RhE). Regarding sensitization assessment, the publication this year of part 10993-10 will include an informative annex with the state of the art of non-animal approaches for the evaluation of chemicals and their potential application to the particular case of medical devices. The qualification of some of these methods for medical devices sensitization assessment is in the roadmap of the working group 8 for irritation and sensitization of the ISO technical committee 194.

This presentation will review the latest normative developments in this area, upcoming projects and challenges for regulatory acceptance in the medical device field.

Objective:
Not applicable or not provided by author

Methods:
Not applicable or not provided by author

Results and Discussion:
Not applicable or not provided by author

Keywords: In vitro, medical devices, ISO 10933, irritation, sensitization, reconstructed human epidermis

References:
Not applicable or not provided by author
INTEGRATION OF THE 3RS ALTERNATIVES IN THE SAFETY TESTING FOR NANOTECHNOLOGIES

SASITORN AUEVIRIYAVIT*, WITTAYA PIMTONG, RATJIKA WONGWANAKUL, KORNPHIMOL KUNTHONG

NANO ENVIRONMENTAL AND HEALTH SAFETY RESEARCH TEAM, NATIONAL NANOTECHNOLOGY CENTER (NANOTEC), NATIONAL SCIENCE AND TECHNOLOGY DEVELOPMENT AGENCY (NSTDA), PATHUM THANI 12120, THAILAND

*sasitorn@nanotec.or.th

ABSTRACT

Introduction:
With the European Directive 2010/63/EU on the protection of animals used for scientific purposes, the internationally recognised 3R Principle was legally recognised. In Thailand, Nanotechnologies have demonstrated significant contribution in various industries especially cosmetics, food and food packaging, and feed and feed additives. Therefore, to safely and effectively utilize of nanomaterials, the toxicological data from reliable predictive models are crucial.

Objective:
Nano Environmental and Health Safety Research Team (NANOTEC) aimed to develop and set up the reliable predictive models as the 3R alternatives in the nanosafety testing. We focus to apply both in vitro model and in vivo zebrafish model to reduce both animal and human ethic problem.

Methods:
We implemented 2D cell model and 3D-tissue model following OECD test guideline and ISO test method for nanosafety testing. Furthermore, we developed 3D-intestinal model derived from human and porcine intestinal organoid as the in vitro tools to evaluate intestinal toxicities. Regarding in vivo model, we use Zebrafish embryo model to evaluate aquatic toxicities.

Results and Discussion:
This presentation will highlight our capabilities on 3R alternatives in the safety testing for nanotechnologies. Following OECD test guidelines and ISO test methods, several guidelines such as OECD TG 439, OECD TG 432, OECD TG 487, ISO 19007 were applied to investigate the hazardous effects of nanomaterials to human. Regarding environmental toxicity, Fish Embryo Acute Toxicity (FET) Test using zebrafish embryo following OECD TG 236 was applied for research and testing of nanomaterial toxicities such as metal nanoparticles and nanoplastics. We also developed the 3D-intestinal model derived from human and porcine intestinal organoid to evaluate intestinal toxicities. The results demonstrated that the developed 3D-intestinal model shows the structure and functionality of intestinal epithelium suggesting the potential tool for 3R alternatives. Furthermore, to increase the predictivity of the in vitro model, microfluidic technology was incorporated with cell culture technology to develop organ-on-a-chip for nanosafety testing.

Keywords: 3R alternatives, 3D-tissue model, nanosafety, zebrafish embryo

References:
APPLYING ZEBRAFISH EMBRYO ACUTE TOXICITY TEST IN CHINA: STATUS AND PROSPECT

ZHENLIE HUANG1*, XUEPING CHEN2, XINFENG YANG1

1SCHOOL OF PUBLIC HEALTH, SOUTHERN MEDICAL UNIVERSITY, GUANGZHOU GUANGDONG, CHINA, 2VITARGENT (INTERNATIONAL) BIOTECHNOLOGY LIMITED, HONG KONG SAR

*huangzhenlie858252@smu.edu.cn

ABSTRACT

Introduction:
With the global consensus to strengthen the application of three R principle on animal testing, the Chinese Society of Toxicology (CSOT) has established Alternative and Translational Toxicology Expert Committee in 2014. We have devoted much efforts to develop toxicology alternative methods, which includes zebrafish embryo related testing methods.

Zebrafish related studies in China initiated in early 1990s, and developed rapidly in the past decade. According to the reports on 14th International Zebrafish Conference held in 2019, zebrafish research force in China ranked 2nd, right after the United States. Currently, there are increasing zebrafish laboratories being established in universities and academic institutes throughout China. All these have established a strong science and technology backstone to support zebrafish embryo’s application in China.

China first established zebrafish embryo acute toxicity test standard is the “Water Quality – Determination of the Acute Toxicity – Zebrafish (Danio rerio) Eggs Method (HJ 1069-2019)”, which derived from ISO 15088. Recently, we have established “Zebrafish Embryo Acute Toxicity Test Method A and Method B (T/GDST 1-2021)” standard. We used zebrafish embryo for acute toxicity testing of chemicals and consumables (including health food and cosmetics etc.), and published part of the validation data in Journal of Toxicology. The results showed significantly consistent toxicity between zebrafish embryo acute toxicity test results and mouse oral acute toxicity test (GB15193.3-2014) results. Additionally, there are increasing number of Chinese companies adopting zebrafish embryo acute toxicity test as internal quality control to ensure products’ safety.

Chinese government has strengthened regulation for consumables, and published the Standard for Publicity and Evaluation of Cosmetics Efficacy regulation on April 9, 2021. This requires scientific evidence for product’s efficacy statement. Zebrafish embryo, as a non-animal, high transparency, high reproducibility, high throughput and good predictability model, is increasingly being applied for efficacy testing. There are several standards being established and much more being developed and validated.

In conclusion, zebrafish embryo as alternative testing model is being developed well in China, and its application in acute toxicity testing is attracting much attention.

Objective:
Not applicable or not provided by author

Methods:
Not applicable or not provided by author

Results and Discussion:
Not applicable or not provided by author

Keywords: Zebrafish embryo, ISO 15088, 3Rs, Acute toxicity test, China

References:
Not applicable or not provided by author
CURRENT VIEWS ON THE 3RS ADAPTATION FOR THE SKIN SENSITIZATION TESTING

TAKAO ASHIKAGA
NATIONAL INSTITUTE OF HEALTH AND SCIENCES, JAPAN
*takao.ashikaga@nihs.go.jp

ABSTRACT

Introduction:
Recently, multiple in vitro skin sensitization tests have been listed in the Organisation for Economic Co-operation and Development (OECD) guidelines. Not only latest innovation but also regulatory approval status on skin sensitization evaluation will be reported. Considering the current circumstances, such as stricter safety assurance on chemicals make new alternative methods for skin sensitization evaluation seem attractive, especially for chemical industry.

Objective:
We developed a potency prediction model using in vitro and in silico data rather than the conventionally used in vivo data, and established a TTC concept for skin sensitization.

Methods:
The EC3 value, the endpoint of the local lymph node assay (LLNA), was used as the objective variable. In vitro tests data and physico-chemical properties were used as explanatory variables. A quantitative prediction model for EC3 was developed using support vector regression (SVR), a machine learning approach. Predicted EC3 values were used to establish the acceptable exposure level (AEL) for each chemical. Then, the 95 and 99 percentile probability of AELs were calculated as the Dermal Sensitization Threshold (DST) values.

Results and Discussion:
This prediction model was validated by a three-fold cross-validation, and the accuracy of potency class prediction in five categories was 45.8%. Assuming 20% of all chemicals are skin sensitizers, the DST (ug/cm2) for women’s face cream was 0.129 (99 percentile) and 3.99 (95 percentile). Furthermore, the threshold concentration of this type of products was 0.008% (for DST 99 percentile) and 0.26% (for DST 95 percentile). This TTC concept for skin sensitization can be applied as a non-animal approach in evaluating the safety profile of new ingredients, for example. In this study, we developed a potency prediction model using SVR, a machine learning algorithm. In future, it is expected that such machine learning-based models for predicting skin sensitization potency will be placed into practical use for predicting acceptable concentrations of ingredients in products.

Keywords: Non-animal, TTC, skin sensitization, in vitro, in silico

References:
PART III: ABSTRACTS OF THE INVITED SPEAKERS ORAL PRESENTATIONS

Forum

Kindly scroll/flip next few pages to view the selected abstract
INTRODUCTION
Careers rarely take the straight path we envisage. How do we make the best of the opportunities offered to us in a changing employment world? In this talk I will share my journey from academia to large pharma, to smaller biotech and back to academia together with my mistakes, my successes and some of the lessons learned along the way.

OBJECTIVE:
The objective of this presentation is to stimulate reflection and discussion on the career paths open to us so we can maximise individual and team potential.

METHODS:
I have woven together key career phases of my career together with lessons learned and key scientific impact including publications from that role. Phases were roughly divided into PhD, postdoc, industry, biotech and academia (the latter two combined).

RESULTS AND DISCUSSION:
A flexible approach to career and to mentoring, networking and teaching drives life-long learning, fulfilment and growth.

KEYWORDS: Career, mentoring, influencing, training

REFERENCES:
EXPLORING IN SILICO TOXICOLOGY FROM A MALAYSIAN'S PERSPECTIVE: THE JOURNEY FROM EUROPE TO BACK HOME

ROZAINI ABDULLAH

DEPARTMENT OF ENVIRONMENTAL AND OCCUPATIONAL HEALTH, FACULTY OF MEDICINE AND HEALTH SCIENCES, AND NATURAL MEDICINES AND PRODUCTS RESEARCH LABORATORY, INSTITUTE OF BIOSCIENCE, UNIVERSITI PUTRA MALAYSIA, 43400 UPM SERDANG, SELANGOR, MALAYSIA

*rozainiabdullah@upm.edu.my

ABSTRACT

Introduction:
Toxicity testing is essential for human risk assessment. Most of toxicity data derived from the in vivo models and these data nonetheless always show a large inter-study variation. These models are commonly used because they represent the entire organism biology that is not replicated by in vitro models, however the extrapolation of toxicity data from in vivo models to humans is imperfect due to differences in anatomy and physiology.

Objective:
The main aim this presentation is to explain the works that has been done in in vitro and in silico studies to predict the in vivo and human situation. In addition, the journey to become a registered toxicologist will be shared during the presentation.

Methods:
To bridge-the-gap between in vitro and in vivo models, a novel method has been developed based on the extrapolation of in vitro concentration-response curves obtained with cell line models to in vivo dose-response curves using physiologically based kinetic (PBK) modeling-based reverse dosimetry. This model simulates the relationship between the external exposure levels and the internal concentrations of a chemical over time.

Results and Discussion:
The in vivo dose effect levels and the points of departure (PODs) for risk assessment including benchmark dose (BMD) or lower confidence limit of the BMD (BMDL) can be defined based on the in vitro effect levels that are assumed to represent the tissue or blood concentration in which may cause toxicity. All of these were obtained from the integrated in vitro-PBK modeling approach. Conclusion: the combined in vitro-PBK modeling approach provides PODs for risk assessment with a similar level of uncertainty as observed in the experimental animal studies, therefore the application of this method could be applied in future human risk assessment studies.

Keywords: risk assessment, in silico, PBK modeling, toxicity testing, toxicologist

References:
TRADITIONAL HERBAL POISONING IN VIETNAM

UYEN VY DOAN

CHO RAY HOSPITAL, VIETNAM

vanessa@ym.edu.tw

ABSTRACT

Introduction:
Traditional herbal medicine is used popularly in Asian countries. In Western countries, it has different names such as homeopathy, complementary and alternative medicine. In Vietnam, Traditional Vietnamese herbal medicine is affected by Traditional Chinese herbal medicine. The source of herbs is from flora, invertebrates, vertebrates and minerals. People who like to use traditional herbal medicine for treatment think that it will be safe, natural and they should use those for long time then it will be effective. Every substance has not only good effects but also side effects or toxic effects. Therefore, when patients have used these for a long time, they could have chronic poisoning. In clinical manifestation of these chronic poisoning, signs and symptoms will be presented similar to those of internal diseases and could be misdiagnosed with any chronic diseases, or physicians cannot find the right diagnosis for those symptoms. The diagnosis in these cases is a challenge to the emergency physicians or general physicians or other specialists. However, the role of medical toxicologist can help to recognize these chronic herbal poisoning. The method of diagnosis and the recognition of these chronic poisoning related to herbal medicine are LEWT method, and the investigation of toxic agent screening (ITAS) have been applied to these cases. Those issues help the medical toxicologists to find the culprit toxins or toxic substances for treatment. Another challenge for us is the lack of chelators for heavy metal poisoning in traditional herbal using. If the cooperation between poison centers in many countries can be developed, the antidotes can be transferred, and it help patients to have better life.

Objective:
Not applicable or not provided by author

Methods:
Not applicable or not provided by author

Results and Discussion:
Not applicable or not provided by author

Keywords: herbal medicine poisoning, Vietnam, LEWT, ITAS

References:
Not applicable or not provided by author
ABSTRACT

Introduction:
Misuse of prescription drugs such as opioids, sedatives and stimulants are common in countries such as the United State of America, Canada and Australia. The evolving epidemic of prescription opioids misuse has placed a tremendous stress on the health care system in these countries with an increase in the attendances at the Emergency Departments and hospitalization rates. Data from the United Nations Office on Drugs and Crime showed that prescription medicine misuse is gaining popularity in South Asia as they are easily available and are perceived to be safer alternatives. Supply of prescription opioids is also increasing in this region. Review of limited peer-reviewed publications showed that prescription medicines misuse (opioids, benzodiazepines, tranquilizers, stimulants) is a problem in several Asian countries.

Objective:
To examine the prevalence of prescription medicine misuse in Singapore with a focus on two studies conducted in Singapore.

Methods:
The first study looks at the prevalence of prescription medicine misuse at a population level, conducted through an internet consumer panel, and the second study evaluates the awareness and perceptions of the doctors on prescription medicine misuse in Singapore.

Results and Discussion:
The results of these studies showed that prescription medicine misuse is not only a problem of the Western countries but is also affecting the populations in this region. These data can help inform determine whether changes to prescribing practices are required and inform prevention and education activities in this region.

Keywords: prescription medicine misuse, Singapore, public health, opioids, tranquilizers

References:
Not applicable or not provided by author
PART III: ABSTRACTS OF THE INVITED SPEAKERS ORAL PRESENTATIONS

Workshop 1

Kindly scroll/flip next few pages to view the selected abstract
PESTICIDES: RISK ASSESSMENT, MANAGEMENT AND COMMUNICATION APPROACHES TO PROTECT HUMAN HEALTH

JEONG HAN KIM¹, YOJI HASHINO², MOHD NAZRUL FAHMI ABDUL RAHIM³, BUDIAWAN⁴ AND VASANT L PATIL⁵*

¹DEPT AGRICULTURAL BIOTECHNOLOGY, SEOUL NATIONAL UNIVERSITY, SOUTH KOREA, ²SYNGENTA ASIA PACIFIC PTE LTD, SINGAPORE, ³PESTICIDE CONTROL & FERTILIZER DIV, DEPT AGRICULTURE, MALAYSIA, ⁴DEPT CHEMISTRY, FACULTY OF SCIENCE, UNIVERSITAS INDONESIA, AND ⁵CROPLIFE ASIA, SINGAPORE

*vasant.patil@crolifeasia.org

ABSTRACT

Introduction:
Pesticides contribute increase of productivity of agricultural production, but may pose certain risk to human and environmental health under exposure when pesticides are used. Among human health concerns, ASEAN countries increase concerns on exposure of consumers to pesticides through residues on agricultural commodity and direct exposure of farmers when they apply pesticides.

Objective:
Pesticides should be evaluated through their risk rather than their hazard, as risk can be characterized by examining the toxicity and exposure, which makes it possible to define when a pesticide must be considered risky under specific use condition.

Methods:
Risk assessment principle can be applied in both dietary risk assessment (DRA) and spray operator exposure risk assessment (Opex RA).

Results and Discussion:
DRA: Maximum residue levels (MRLs) are not safety standards for pesticides but indicators for compliance of good agricultural practices (GAP) or registered use pattern. Risk assessment shall be the basis of food safety assessment. Internationally accepted references, such as Codex Guidance Document, FAO Training Manual, WHO GEMS/Food Cluster Diets, including published residue definitions should be used as reference for pesticide residue evaluation and DRA methodology. Due to similar weather patterns, crops and cropping systems in ASEAN countries, data pooling and sharing, as well as accepting/mutual recognition is recommended as part of harmonization effort for local registrations and import tolerance application for key export commodities. Opex RA: Risk assessment that consists of hazard evaluation and exposure assessment with subsequent comparison of both should be conducted to evaluate the safety of operators when using pesticides. For exposure assessment, data from databases of the US and EU authorities can be used and their strength is on relevant application scenarios prevailing in these regions. In Asia Pacific region, various authorities in Japan, Korea and China have started certain activities, which can serve as a basis for a comprehensive approach covering a broader region of Asia Pacific. Currently, the calculator (CropLife International’s OPEX tool) could serve as a basic model for exposure and risk assessments in ASEAN countries. For appropriate use, it is essential to choose model scenarios that closely reflect application scenarios. In cases where scenarios could result in highly varying exposures, additional personal protective equipment has to be recommended. In addition to appropriate mitigation measures recommendation, the corresponding correct use and maintenance of spray equipment is of great importance. Stewardship activities, as a joint effort by authorities and industry, are essential for the implementation of sustainable and responsible use of pesticides to ensure the health and safety of farmers/spray operators.

Keywords: pesticides, exposure, hazard, risk assessment, risk management/mitigation

References:
Workshop 2

Kindly scroll/flip next few pages to view the selected abstract
REGULATORY EXPECTATIONS FOR SUSTAINABLE CHEMICALS MANAGEMENT IN DEVELOPING COUNTRIES

TS. HAZLINA YON¹ AND IR MOKHTAR SABTU²

¹TECHNOLOGIST/DEPARTMENT OF OCCUPATIONAL SAFETY AND HEALTH MALAYSIA, ²INGENIEUR/DEPARTMENT OF OCCUPATIONAL SAFETY AND HEALTH MALAYSIA.

*hazlinayon@gmail.com

ABSTRACT

Introduction:
Chemicals are used worldwide, including Malaysia, as they provide us with much benefits. However, some chemicals pose certain threats to the safety and health of human, as well as the environment. Sound management of chemical at workplace plays an important role in avoiding and minimising risks posed by these harmful chemicals. Protecting employees from the adverse effects of chemicals is one of the primary duties of an employer under the Occupational Safety and Health Act 1994. In Malaysia, chemical management is governed by many agencies through their respective acts causing duplication of effort and some grey areas under chemical management not regulated.

Objective:
To share the current approach of the Department of Occupational Safety and Health (DOSH) in ensuring sustainable chemicals management in Malaysia.

Methods:
A 10-year data from the DOSH online system (Mykpp and yearly performance indicator by 15 state offices in Malaysia) on chemical management enforcement activities was analysed. Compliance to the Use and Standard of Exposure Chemical Hazardous to Health (USECHH) 2000 Regulation was graded as A (100 – 80%), B (79 – 65%), C (64 – 50%), D (49 – 26%), and E (25 – 0%). Compliance is deemed satisfactory when the score is C and above.

Results and Discussion:
From 2010 to 2020, 9712 workplaces were inspected during routine inspection and 54% were graded A to C, whilst 46% were graded D to E. From 2016 to 2020, 2530 workplaces were recorded for special enforcement and 70% were graded A to C, whilst 30% were graded D to E. Both enforcement approaches showed high percentage of compliance. Significant improvement in compliance with the legislation was observed since USECHH introduction in 2000. USECHH enforcement data analysis specifies lack of compliance in the medical surveillance upon recommendations by chemical risk assessor. Analysis of enforcement on chemical suppliers shows lowest compliance in classification of hazardous chemicals. Noncompliance is common among the small and medium enterprises. Progressive modifications to the organizational structure of each custodian agency fo chemical management and beyond those offered by the existing legislations is recommended to ensure sustainable chemicals management. The way forward is to establish a National Chemical Council or Board.

Keywords: chemical management, compliance, sustainable, chemical legislations, gap

References:
MANAGING TRADE BARRIERS THROUGH APPLICATION OF GLOBALLY HARMONIZED SYSTEM (GHS) TO PETROLEUM SUBSTANCES

JESSICA RYMAN-RASMUSSEN
AMERICAN PETROLEUM INSTITUTE (API), WASHINGTON, DC, USA

ABSTRACT

Introduction:
The United Nations Globally Harmonized System (UN GHS) provides a standardized and internationally comprehensible system for hazard identification and labelling of products. Its implementation in national or regional regulatory frameworks facilitates global trade. Crude oil, its refining streams, and petroleum products are traded globally. Petroleum substances are comprised of chemicals that can number in the hundreds and vary in composition due to variability in natural sources and refining conditions. This poses a challenge for data development, hazard identification, and classification.

Objective:
The Objective is data development and hazard identification and classification for petroleum substances, which are Chemical Substances of Unknown or Variable Composition, Complex Reaction Products and Biological Materials (UVCBs).

Methods:
A Categories (or Groups) approach to petroleum and its refining streams, along with the use of data for substances representative of each Category has been key to addressing this challenge. Physicochemical characterization and hazard data from representative substances from each Category (or Group) has been developed by the American Petroleum Institute (API). Guidance from IPIECA for applying GHS criteria to petroleum substances is then used.

Results and Discussion:
Together, the Categories (or Groups) approach and the application of IPIECA Guidance to GHS ensure international consistency in hazard identification. This reduces trade barriers for petroleum substances. The use of existing data for read-across within a Category reduces the time and cost required for data development while reducing animal testing.

Keywords: Petroleum, UVCBs, IPIECA, American Petroleum Institute (API), Globally Harmonized System (GHS)

References:
API HPV Challenge Program (https://petroleumhpv.org)
API APITOX database (https://apitox.api.org/index.cfm)
CONCAWE (https://www.concawe.eu/reach/petroleum-substances-and-reach/)
ABSTRACT

Introduction: UNITAR is a dedicated training arm of the United Nations (UN), with activities related to capacity building and implementing the goals and objectives of global agreements, frameworks and policies. Through its Chemicals and Waste Management Programme (CWM), UNITAR supports countries and stakeholders in their efforts, across a range of relevant topics. Notably, these include the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) and Pollutant Release and Transfer Registers (PRTRs), among others. UNITAR is also a Participating Organization of the Inter-Organization Programme for the Sound Management of Chemicals (IOMC), made up of nine intergovernmental organizations.

Objective: To present UNITAR’s perspective on sound management of chemicals and waste beyond 2020 in relations to GHS and PRTRs.

Methods: By engaging in policy discussions and plans for the implementation of agreements, UNITAR is well-placed to support countries and stakeholders, with a core team and an extensive network of experts on specific topics.

Results and Discussion: Key topics for UNITAR are the GHS and PRTRs. These are well established tools for the sound management of chemicals; the GHS is specifically mentioned in SAICM’s Basic Elements of the Overall Orientation and Guidance, and PRTRs directly relate to the Core Activity Area “to promote information access”. Nonetheless, as the second Global Chemicals Outlook notes: “Progress has been made in many areas. For example, the number of countries having established PRTRs and implementing the GHS has increased since 2010. However, progress remains insufficient, pointing to an urgent need to take concerted action to develop basic chemicals management systems in all countries”. UNITAR hopes that the Beyond 2020 instrument can renew the focus on these two key activity areas, alongside others, with key commitments, goals and targets that can spur the development of these systems in countries and effective implementation by stakeholders. UNITAR supports the prominent inclusion of these topics and is available to support stakeholders in their implementation. PRTRs and the GHS are also IOMC indicators of progress, offering clear and concise activities for implementation that can be measured and reported on.

Keywords: Beyond 2020, GHS, PRTR, sound management of chemicals and waste

MANAGING ENVIRONMENTAL HEALTH IN THE OIL & GAS INDUSTRY

NOR RAHMAH NOR HASHIM¹

¹PETRONAS

rahmahs@petronas.com

ABSTRACT

Introduction:
Environmental health is the interaction between the environment and human health and vice versa whereby exposure to environmental stressors, such as chemicals and noise, influences the health outcomes. The goals in environmental health is to prevent injury and illness and promote the well being of people. There is growing pressure on the oil and gas industry to balance socio-economic contribution with environmental and health impacts of sustainability. The COVID19 pandemic is accelerating global sustainability movement and seen as supporting the promotion of environmental health in the industry.

Objective:
To share aspects of and challenges in managing environmental health in the oil & gas industry

Methods:
This paper is based on industry experience.

Results and Discussion:
This paper discusses the environmental health issues in the oil and gas industry ranging from ambient air quality, water quality, homes and communities, and climate change. The wide scope of environmental health sees implementation of initiatives related to environmental health across a wide spectrum of practice. Focusing on impacts of chemicals, this paper continues the discussion on managing environmental health by highlighting examples of internal and external factors that drive corporations to take active roles in addressing environmental health issues. As an emerging area of focus, the challenges to operationalize environmental health range from regulatory framework to human capital and technology. The interdisciplinary nature of environmental health also presents a unique challenge calling for collaboration among practitioners, including toxicologists. Despite the challenges, environmental health is a strategic investment in sustainability for the industry aiming to protect business, the environment, and community from chemical impacts.

Keywords: environmental health, human health risk assessment

References:
Not applicable or not provided by author
PART IV: LIST OF ORAL SESSIONS

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oral Session 1: Eco-toxicology & Environmental Toxic</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>TOXIC EFFECTS OF DETERGENT ARIEL ON OXIDATIVE DAMAGE OF FRESH WATER FISH, CHANNA PUNCTATUS</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>S.M. Rafi et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HERBICIDES AND POPULATION HEALTH OF FROG, FEJERVARYA LIMNOCHARIS, IN PADDY FIELDS OF NORTHERN THAILAND</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Luhur Septiadi et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHTHALATE AND BISPHENOL A MIXTURE-LINKED ASTHMA DEVELOPMENT: POSITIVE PROBIOTIC INTERVENTION</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Katarina Baralić et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICROBIAL ENZYMES FROM MICROCYSTIN-DEGRADING BACTERIA FOR BIOREMEDIATION</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Salfarina Ramli & Ken-Ichi Harada</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRIGONELLINE PREVENTS OXIDATIVE DAMAGE IN UVB IRRADIATED DERMAL FIBROBLASTS AND BALB/C MICE</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Malik A. Tanveer et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral Session 2: Risk Assessment</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>OCCUPATIONAL EXPOSURE TO PESTICIDES AMONG RICE GROWERS IN MALAYSIA</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Heie Ling Wong et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A SYSTEMATIC IN VIVO STUDY OF COPPER HYDROXIDE NANOPESTICIDES USING DROSOPHILA MELANOGASTER: CELLULAR UPTAKE AND BIOLOGICAL IMPACTS</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Esref Demir et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RISK ASSESSMENT OF AFLATOXIN IN HERBAL MEDICINES AND PLANT FOOD SUPPLEMENTS MARKETED IN MALAYSIA</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Siti Soleha Abdullah et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL DIET STUDY ON EXPOSURE TO METHYLMERCURY IN MALAYSIA</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Laila Rabaah Ahmad Suhaimi et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIS-BASED INTERPOLATION METHOD TO URINARY METAL CONCENTRATIONS IN MALAYSIA</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Noraisah Mohammad Sham et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral Session 3: Herbal & Natural Product Toxicology</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>OCHRATOXIN A AND ANTIOXIDANT ACTIVITIES OF ROASTED COFFEE BEANS IN PHNOM PENH, CAMBODIA</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Oeung Sokunvary et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANTIOXIDANT ACTIVITIES & ANTI-INFLAMMATION OF COELONIN FROM DENDROBIUM SCABRILINGUE</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Hasseri Halim et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FISH ACUTE TOXICITY TESTING OF LITSEA GARCIAE METHANOLIC EXTRACT IN ADULT ZEBRAFISH</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Raduan, Szer et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOXICITY STUDIES OF SUPERCRITICAL FLUID EXTRACT OF LOCAL ZIZIPHIUS MAURITIANA (BIDARA) FRUIT</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Muhiyuddin Md Nasir et al.</td>
<td></td>
</tr>
<tr>
<td>Oral Session 4: Genotoxicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHARMACOLOGICAL ACTIVATION OF AUTOPHAGY RESTORES CELLULAR HOMEOSTASIS IN UVB-INDUCED GENOTOXIC STRESS RESPONSE IN SKIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheikh A. Umar et al.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THE PRESENCE OF GENOTOXIC AND CARCINOGENIC PHYTOCHEMICALS IN MEDICINAL PLANTS BASED ON THE MALAYSIAN HERBAL MONOGRAPH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nur Azra Mohamad Pauzi et al.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROLE OF NRF2/NQO1 PATHWAY IN MEDIATED ARSENITE-INDUCED MALIGNANT TRANSFORMATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qi Kong et al.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVERVIEW OF GENOTOXICITY FIELD IN MALAYSIAN ENVIRONMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mogana Das Murtey</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oral Session 5: Mechanistic Toxicology</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPREHENSIVE HISTONE, DNA METHYLATION AND MRNA EXPRESSION ANALYSIS OF MURINE LIVER REPEATEDLY EXPOSED TO CHEMICALS</td>
</tr>
<tr>
<td>J. Kanno et al.</td>
</tr>
<tr>
<td>FIBROBLAST GROWTH FACTOR RECEPTOR 4 AS A POTENTIAL DRUGGABLE TARGET FOR TRIPLE NEGATIVE BREAST CANCER</td>
</tr>
<tr>
<td>Li Ying Chew et al.</td>
</tr>
<tr>
<td>CERIUM OXIDE NANOPARTICLES A POTENTIAL THERAPY FOR HEPATIC FIBROSIS SYMPTOMS</td>
</tr>
<tr>
<td>Adrian Boey et al.</td>
</tr>
<tr>
<td>REDUCTION OF ARSENIC TOXICITY THROUGH NRF2 ACTIVATION MEDIATED BY (2)-2-ALKENALS IN CORIANDRUM SATIVUM L. LEAF EXTRACT</td>
</tr>
<tr>
<td>Hanako Aoki et al.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oral Session 6: Nanotoxicology</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILVER NANOPARTICLES INDUCED APOPTOSIS IN HIPPOCAMPAL NEURONS VIA MITOCHONDRIAL DYSFUNCTION</td>
</tr>
<tr>
<td>Xiaoru Chang et al.</td>
</tr>
<tr>
<td>PROTEIN CORONA MITIGATED THE TOXICITY OF CADMIUM TELLURIDE QUANTUM DOTS TO MACROPHAGES BY TARGETING MITOCHONDRIA</td>
</tr>
<tr>
<td>Na Liu et al.</td>
</tr>
<tr>
<td>TOXICITY OF CURCUMIN NANOPARTICLES IN ALVEOLAR MACROPHAGE: EFFECTS OF SURFACE CHARGES</td>
</tr>
<tr>
<td>Wing Hin Lee et al.</td>
</tr>
<tr>
<td>MACROPHAGE POLARIZATION AND INFLAMMATION INDUCED BY SILVER NANOPARTICLES VIA AUTOPHAGY IN BV2 CELLS</td>
</tr>
<tr>
<td>Mengting Shang et al.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oral Session 7: Occupational, Clinical or Regulatory Toxicology</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACILITATING ACCESS TO EDUCATIONAL RESOURCES FOR TRAINING IN NONANIMAL METHODS IN DEVELOPING COUNTRIES</td>
</tr>
<tr>
<td>Esther Haugabrooks and Kristie Sullivan</td>
</tr>
<tr>
<td>CHALLENGES OF GHS IMPLEMENTATION WORLDWIDE</td>
</tr>
<tr>
<td>Goh Coo Ta</td>
</tr>
<tr>
<td>MICROPLASTIC EXPOSURE, POSSIBLE HEALTH IMPACT AND POLICY MEASURES</td>
</tr>
<tr>
<td>Ahmad Faizal Abdull Razis and Usman Sunusi</td>
</tr>
<tr>
<td>SAFETY PHARMACOLOGY TEST OF PLANT-BASED COVID-19 VACCINE IN NON-HUMAN PRIMATES</td>
</tr>
<tr>
<td>Suchinda Malaivijitnond et al.</td>
</tr>
</tbody>
</table>
PART IV: ABSTRACTS OF THE ORAL SESSION’S PRESENTATION

Oral Session 1:
Ecotoxicology / Environmental Toxicology

Kindly scroll/ flip next few pages to view the selected abstract
TOXICITY EFFECT OF DETERGENT ARIEL ON OXIDATIVE DAMAGE OF FRESHWATER FISH, CHANNA PUNCTATUS

1S.M. RAFI, 2S.V. RAVIKANTH, 1D. CHAND BASHA*, 1M. SRINIVASULU REDDY & 1K. JAYANTHA RAO

1DEPARTMENT OF ZOOLOGY, S.V. UNIVERSITY, TIRUPATI, INDIA, 2DEPARTMENT OF BIOLOGICAL SCIENCES, SREE VIDYANIKETHAN DEGREE COLLEGE, TIRUPATI, INDIA

*drchandbasha2012@gmail.com

ABSTRACT

Introduction:
Detergents are extensively used chemicals at home, as well as in industry and some of their ingredients are highly toxic to aquatic organisms.

Objective:
The aim of this study is to investigate the toxicity of commercial detergent, Ariel on liver and gill tissues of fresh water fish, channa punctatus.

Methods:
The probit method was used to determine the median lethal concentration (LC$_{50}$) of Ariel detergent. The LC$_{50}$ value of Ariel detergent for 96 hours was 32 ppm. To evaluate the detergent-induced toxicity, the fish channa punctatus were exposed to 1/5th of 96h LC$_{50}$ concentration (6.4 ppm) for a period of 7 and 14 days.

Results and Discussion:
Detergent caused a decrease in the activities of superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase, and glutathione levels, whereas the activity of xanthine oxidase and MDA levels increased in both liver and gill tissues after 7 and 14 days exposure. Morphological impairments of liver tissues, characterized by loose arrangement, irregular distribution and degeneration of the hepatocytes with increased sinusoidal space and vacuolization was observed. Gill tissue showed hyperemia in the afferent and efferent branchial arteries and congestion in the secondary lamellae after 7 and 14 days detergent exposure. In conclusion, the data indicate that exposure to detergent profoundly induces the oxidative stress in selected tissues, which leads to histopathological impairments suggesting the deleterious effect caused by the detergent was probably due to the combined effects of the ingredients of detergent, further these impairments were found to be time-dependent.

Keywords: Ariel, Detergent, oxidative stress, histopathology, fresh water fish

References:
HERBICIDES AND POPULATION HEALTH OF FROG, FEJERVARYA LIMNOCHARIS, IN PADDY FIELDS AT NORTHERN THAILAND

LUHUR SEPTIADI1, PANUPONG THAMMACHOTI1, NOPPADON KITANA1*

1DEPARTMENT OF BIOLOGY, FACULTY OF SCIENCE, CHULALONGKORN UNIVERSITY, BANGKOK 10330, THAILAND

*noppadon.k@chula.ac.th

ABSTRACT

Introduction:
Herbicides has been intensively used in Thailand’s agriculture, leading to a potential environmental risk to human and non-target organisms (Laohaudomchok et al., 2020). Prior studies using sentinel species (Roy, 2002), showed that frogs living in field with herbicide use in northern Thailand had higher residues and changes in morphological and physiological status (Thammachoti et al., 2012; Jantawongsri et al., 2015).

Objective:
We aimed to examine the potential influence of herbicides on the rice frog Fejervarya limnocharis populations based on morphometric/gravimetric parameters and size-frequency distribution.

Methods:
Samplings of waters and frogs (IACUC of CU-ACUP Review No.2123002) were conducted from two paddy fields with different degree of herbicide utilization at Nan province, northern Thailand, during wet season (July) to dry season (February). Herbicide residues were screened by ELISA. Frogs from these sites were compared for condition factor, hepatosomatic index (HSI), gonadosomatic index (GSI) by two-way ANOVA and Tukey’s HSD test; and size-frequency distribution by two-sample Kolmogorov-Smirnov test.

Results and Discussion:
Atrazine was detected in the waters from the contaminated site (Maneein et al., 2011), while atrazine and paraquat tissue residues were markedly different between sites (Jantawongsri et al., 2015). At individual level, condition factor showed significant site-related differences in wet season, indicating potential influence on the overall health. Gravimetric analyses showed significant site-related differences in HSI of both males and females in wet season, indicating a higher exposure to xenobiotics. Although no significant site-related difference was found in GSI of both males and females, it was noteworthy that females from the contaminated site tended to have higher GSI, indicating potential effect of xenoestrogens. At population level, growth patterns were markedly different between sites. Size-frequency distribution showed significant site-related differences and disproportionate distribution of frogs in the contaminated site. Overall results suggest that herbicides could influence non-target organisms at individual and population levels, leading to subtle and perpetual changes towards biodiversity loss in agroecosystem.

Keywords: agrochemicals, gravimetric analysis, morphometric analysis, population, sentinel species

References:
PHTHALATE AND BISPHENOL A MIXTURE-LINKED ASTHMA DEVELOPMENT: POSITIVE PROBIOTIC INTERVENTION

KATARINA BARALIĆ1*, DRAGICA JORGOVANOVIĆ1, KATARINA ŽIVANČEVIĆ1, DRAGANA JAVORAC1, ALEKSANRA BUHA DJORDJEVIĆ1, PREDRAG VUKOMANOVIĆ2, ZORICA BULAT1, DANIJELA ĐUKIĆ-ĆOSIĆ1

1DEPARTMENT OF TOXICOLOGY “AKADEMIK DANILÔ SOLDATOVIĆ”, UNIVERSITY OF BELGRADE – FACULTY OF PHARMACY, SERBIA, 2MEDICAL SANITARY SCHOOL OF APPLIED SCIENCES “VIKAN”, SERBIA

* katarinab@pharmacy.bg.ac.rs

ABSTRACT

Introduction:
The linkage between environmentally relevant chemicals, phthalates and bisphenol A (BPA), and various allergic symptoms, including asthma, has become a topic of great importance. Epidemiologic studies have demonstrated the simultaneous nature of human exposure to these substances due to their ubiquitous use in a variety of consumer products.

Objective:
To explore the mechanisms of bis(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) and BPA mixture-induced asthma development and test multi-strained probiotic as potential positive intervention.

Methods:
Comparative Toxicogenomics Database (CTD), Cytoscape software and ToppGene Suite were used for in silico analysis. In vivo subacute experiment (ethical approval 323-07-11822/2018-05) was conducted on rats divided into seven groups (n=6): (1) Control: corn oil, (2) P: probiotic (8.78 * 10^8 CFU/kg/day); (3) DEHP: 50 mg/kg b.w./day, (4) DBP: 50 mg/kg b.w./day, (5) BPA: 25 mg/kg b.w./day, (6) MIX: DEHP + DBP + BPA; (7) MIX + P. Lungs and thymus were extracted and prepared for redox status analysis.

Results and Discussion:
There were 24 DEHP, DBP and BPA asthma-related genes, while apoptosis, inflammation and oxidative stress were highlighted as the most probable mechanisms. The ability of the mixture to induce oxidative stress in lung and thymus tissues was confirmed by subacute in vivo experiment. In thymus, total oxidative status (TOS) and superoxide anion (O2-) elevation, as well as total thiol groups (-SH) reduction, were observed only in the MIX group. The decrease in total antioxidative status (TAS) was the most prominent in MIX, but was also noted in DBP and BPA groups. Although change in superoxide dismutase activity (SOD) was not statistically significant, this parameter was the lowest in MIX group. By contrast, in lungs, a significant decrease in SOD was observed in DEHP and MIX groups, but was more pronounced in MIX. The same pattern could be observed for advanced oxidation protein products (AOPP). Probiotic annulled mixture-induced changes in TOS, TAS and -SH in thymus, as well as AOPP in lungs, where it also alleviated the change in SOD.

Keywords: endocrine disruptors, oxidative stress, toxicogenomic data mining, multi-strain probiotic

References:

MICROBIAL ENZYMES FROM MICROCYSTIN-DEGRADING BACTERIA FOR BIOREMEDIATION

SALFARINA RAMLI1,2, KEN-ICHI HARADA3*

1FACULTY OF PHARMACY, UNIVERSITI TEKNOLOGI MARA CAWANGAN SELANGOR, MALAYSIA
2INTEGRATIVE PHARMACOGENOMICS INSTITUTE, UNIVERSITI TEKNOLOGI MARA CAWANGAN SELANGOR, MALAYSIA, 3GRADUATE SCHOOL OF ENVIROMENTAL AND HUMAN SCIENCE, AND FACULTY OF PHARMACY MEIJO UNIVERSITY, JAPAN

* kiharada@meijo-u.ac.jp

ABSTRACT

Introduction:
Bioremediation using bacteria has been proposed as eco-friendly and results in cost-effective outcome. Microcystins (MC) are the most widely distributed and abundant toxins associated with freshwater harmful algal blooms (HABs). The degradation activity of MC-degrading bacteria in the aquatic environment, MIr enzymes, and the phylogenetics of these bacteria have been widely reported. Furthermore, a complete genome of MC-degrading bacteria allows the preparation of recombinant MIr enzymes, which opens to enzyme based-bioremediation potentials.

Objective:
To review studies that investigate the activity of MIr enzymes obtained from MC-degrading bacteria on the mechanism of degradation of microcystin and other harmful pollutants found in aquatic environment. The review also emphasizes on studies that apply MC-degrading bacteria and MIr enzymes for enzyme-based bioremediation purpose.

Methods:
In this systematic review, the questions and inclusion criteria were first determined. Inclusion criteria include MC-degrading bacteria, their degradation mechanism on aquatic pollutants, recombinant MIr enzymes, bioaugmentation and bioremediation studies. The title and abstract screening was carried out in more than one databases. RevMan software was used to manage and find overlapped studies.

Results and Discussion:
This review provides the current state of understanding on the MIr enzymes. Our findings highlight critical knowledge gaps, such as field applications, and the incorporation of molecular approaches. Our results show the effect of MIr enzymes on pollutants fate and the variables that need to be considered for the optimization of approach for the enzyme-based bioremediation in aquatic system.

Keywords: Bioremediation, aquatic pollutant, MC-degrading bacteria, MIr enzyme, recombinant enzyme

References:
TRIGONELLINE PREVENTS OXIDATIVE DNA DAMAGE IN UV-B IRRADIATED DERMAL FIBROBLASTS AND BALB/C MICE VIA ACTIVATION OF PI3K-AKT-NRF2 AXIS

MALIK A. TANVEER1,2, SHIEKH A. UMAR1,2, LONE A. NAZIR1,2, NAIKOO H. SHAHID1,2, GUPTA DIVYA1,2, AND SHEIKH A. TASDUQ1,2*

1PHARMACOKINETICS-PHARMACODYNAMICS AND TOXICOLOGY DIVISION, COUNCIL OF SCIENTIFIC AND INDUSTRIAL RESEARCH, INDIAN INSTITUTE OF INTEGRATIVE MEDICINE, JAMMU & KASHMIR, INDIA,
2ACADEMY OF SCIENTIFIC AND INNOVATIVE RESEARCH, GHAZIABAD, INDIA

*stabdullah@iiim.res.in

ABSTRACT

Introduction:
Excessive exposure to Ultraviolet (UV) radiation negatively affects the human skin, characterized by photodamage, which includes premature aging and carcinogenesis. UV-B radiation causes about 90% of non-melanoma skin cancers by directly or indirectly damaging the DNA.

Objective:
The effects and mechanisms of Trigonelline (TG) against UV-B induced photodamage were explore using in-vitro and in-vivo models of skin photodamage

Methods:
Primary human dermal fibroblasts (HDFs) were cultured in the presence or absence of TG for 24 hours. Effects of UV-B and TG were assessed by examining cell viability, oxidative stress & DNA damage through biochemical assays, florescent microscopy and protein expression studies. In in-vivo study, TG pre-treated Balb/C mice were irradiated with 180mj/cm² of UV-B dose thrice a week on alternative days for four months (Ethics committee approval number 1080/2/17).

Results and Discussion:
TG significantly alleviates UVB–induced cell death effects in HDFs. TG protects HDFs and Balb/C mice from UV-B-induced DNA damage by regulating the expression profile of DNA damage marker proteins P53, ATM, ATR, YH2AX, Chk1 and Chk2. TG offers geno-protection to UVB–irradiated HDFs and Balb/C Mice by alleviating CPD induction, reducing the number of tunnel positive cells and by decreasing the expression levels of DNA damage marker protein YH2AX in immunocytochemistry. Furthermore, TG prevents the UVB-induced oxidative stress by activating the various downstream proteins of PI3K-AKT-Nrf2 signalling pathway. PI3K inhibitor (LY294002) significantly increased the expression of YH2AX and p-P53, indicating TG mediates its photo-protection via PI3K-AKT-Nrf2 signalling pathway.

Keywords: Ultraviolet-B, Photo-damage, Oxidative stress, DNA damage, Trigonelline

References:
PART IV: ABSTRACTS OF THE ORAL SESSION’S PRESENTATION

Oral Session 2: Risk Assessment

Kindly scroll/flip next few pages to view the selected abstract
OCCUPATIONAL EXPOSURE TO PESTICIDES APPLIED AMONG RICE GROWERS IN MALAYSIA

HIE LING WONG1*, DAVID G. GARTHWAITE2, AN NURAINEE JAIS1, NURUL NAJIAH NORMAN1, NURIN DALILA MOHD SHOBRI1 AND COLIN D. BROWN3

1FACULTY OF EARTH SCIENCE, UNIVERSITI MALAYSIA KELANTAN (UMK), 2FERA SCIENCE LTD (FERA) AND 3DEPARTMENT OF ENVIRONMENT AND GEOGRAPHY, UNIVERSITY OF YORK

*hlwong@umk.edu.my

ABSTRACT

Introduction:
Rice is a staple crop mainly grown in developing countries, which often rely on pesticides to ensure high grain yields. The common use of knapsack sprayers in rice may cause higher exposure than mechanical application methods (Phung et al. 2012), particularly walking in submerged rice systems. To date, there is no established model/algorithms available to assess pesticide risk in rice systems (Wong and Brown 2021).

Objective:
This study investigates potential rice growers’ exposure to pesticides under major pesticide use scenarios and associated factors of exposure and risk in submerged rice systems.

Methods:
To estimate rice growers’ exposure to active substances, contextual information was collected from 37 rice growers using personal interview and questionnaire surveys (approved by Faculty of Earth Science, UMK) across a cropping season in 2019 in Kelantan, Malaysia together with label collection. Pesticide application rate was the key parameter of four selected exposure models for four potential scenarios, where exposure estimates larger than the agricultural operator exposure level (AOEL) indicates potential health risk.

Results and Discussion:
Overall, 15 of 37 rice growers submitted the questionnaire surveys comprising a range of total spraying days (3 – 35 days) and total grown areas (1.6 – 20.3 ha). A total of 34 pesticide products were applied (20 insecticides, 11 herbicides and 3 fungicides), including 11 products that were not registered for use on rice in Malaysia. On single spraying days, the four selected models predicted total exposures of 0.20 – 969 µg kg bw⁻¹ day⁻¹ to single active substances, comprising the largest dermal contact from residues on treated foliage (EFSA 2014; 8.74 – 969), followed by dermal exposures while handling knapsack sprayers (AOEM; Großkof et al. 2013) and that for application, washing and maintenance (WHO 2018; 0.40 – 404), and the least for legs contact from contaminated rice paddies (0.20 – 153). Each model had estimated exposures larger than the AOELs (52 – 151 of 288 applications). The analysis indicated higher exposure associated with wettable powder formulations and a requirement to generate local information to replace the use of default model parameters. Study findings can be used to mitigate pesticide risk in rice more effectively.

Keywords: paddy, growers, knapsack/backpack sprayers, models/algorithms, regulatory

References:
EFSA (2014). EFSA guidance on the assessment for plant protection product. EFSA J., 12(10), 3874
A SYSTEMATIC IN VIVO STUDY OF COPPER HYDROXIDE NANOPESTICIDES USING DROSOPHILA MELANOGASTER: CELLULAR UPTAKE AND BIOLOGICAL IMPACTS

ESREF DEMIR1*, ONDER TOPEL2, SEYITHAN KANSIZ2-3, GOKHAN AKKOYUNLU2, MEHMET DOGAN2 AND MUHAMMED YUSUF KANDUR4

1ANTALYA BİLİM UNIVERSITY, 2AKDENİZ UNIVERSITY, 3ANKARA UNIVERSITY AND 4MARMARA UNIVERSITY

*esref.demir@antalya.edu.tr

ABSTRACT

Introduction:
One of the fastest-moving fields in today’s world of applied science, nanotechnology allows the control and design of matter on an extremely small scale. Understanding the interactions between nanopesticides and edible plants, as well as non-target animals, is crucial in assessing the potential impact of nanotechnology products on the environment, agriculture and human health.

Objective:
We need better insight into cellular uptake and biological effects to derive conclusive evidence on the safety or toxicity/genotoxicity of nanopesticides using Drosophila melanogaster.

Methods:
Third instar larvae were fed with copper (II) hydroxide (Cu(OH)2) nanopesticides (Kocide® 3000) and its microparticulated (or bulk) form, as copper (II) sulfate pentahydrate (CuSO4.5H2O) at concentrations ranging from 0.01 to 5 mM. Viability, morphological deformations, locomotor activity, phenotypic variations, internalization, lipid peroxidation product formation, oxidative stress, intracellular reactive oxygen species production, and genotoxicity were the end-points evaluated in D. melanogaster larvae.

Results and Discussion:
The obtained results show that Cu(OH)2 nanopesticides have the ability to be distributed inside midgut cells and translocate to the general body compartment (internal hemolymph) interacting with hemocytes. Cu(OH)2 nanopesticides had non-genotoxic potential, in agreement with their inability to increase ROS, malondialdehyde and GSH production. On the other hand, the fact that CuSO4.5H2O exposure produced more harmful effects than Cu(OH)2 nanopesticides. This is the first study to report findings of nanogenotoxicity, phenotypic variations and locomotor behaviour in D. melanogaster. Our results once again validated D. melanogaster as a dynamic in vivo model to explore possible risks and effects of this nanopesticide.

Keywords: nanopesticides, nano-copper hydroxide, Drosophila melanogaster, genotoxicity, health

References:
RISK ASSESSMENT OF AFLATOXIN IN HERBAL MEDICINES AND PLANT FOOD SUPPLEMENTS MARKETED IN MALAYSIA

SITI SOLEHA ABDULLAH 1*, MOHD REDZWAN SABRAN2, HASIAH AB HAMID3, ROZAINI ABDULLAH1

1DEPARTMENT OF ENVIRONMENTAL AND OCCUPATIONAL HEALTH, 2DEPARTMENT OF NUTRITION, 3DEPARTMENT OF BIOMEDICAL SCIENCES, FACULTY OF MEDICINE AND HEALTH SCIENCES, UNIVERSITI PUTRA MALAYSIA

*gs55726@student.upm.edu.my

ABSTRACT

Introduction:
Aflatoxin B1 (AFB1) is a mycotoxin produced by Aspergillus species of fungi which may lead to aflatoxicosis. AFB1 contamination in herbs has become a great concern since there is an increasing demand for herbs as an alternative treatment to treat diseases as well as to maintain health.

Objective:
The objective of this study is to determine the risk assessment of AFB1 in herbal medicines and plant food supplements (PFS) using Margin of Exposure (MOE) approach.

Methods:
29 herbal medicine and PFS samples were purchased over the counter and from online shop using targeted sampling. AFB1 was extracted with 70% methanol, filtered using immunoaffinity column and quantified using ELISA assay. Next, the MOE values were calculated based on the Benchmark Dose Level10 (BMDL10) derived from the animal data and estimated dietary intake (EDI) in adults as described in EFSA scientific opinion for risk assessment of aflatoxins in food (EFSA, 2020).

Results and Discussion:
AFB1 was detected in 20 out of 29 herbal medicine and PFS samples, ranged from 2808 ng/kg to 895560 ng/kg. The estimated EDI of AFB1 in positive samples ranging from 0.1053 to 671.67 ng/kg per body weight/day. Next, the calculated BMDL10 values for AFB1 were ranged from 63.46 to 5069.24 ng/kg per body weight/day. The MOE values of less than 10,000 for all positive samples indicated a high priority for risk management actions. This study provide data that can create awareness to the public and emphasize the need for stringent standards towards production and quality assessment of herbal products to reduce the risk of AFB1 exposure through herbs and PFS in Malaysia.

Keywords: Risk assessment, Aflatoxin B1, Herbal Medicine, Benchmark Dose, Margin of Exposure (MOE)

References:
https://doi.org/10.2903/j.efsa.2020.6040
TOTAL DIET STUDY ON METHYL MERCURY IN MALAYSIA

LAILA RABAAB AHMAD SUHAIMI¹, ANIDA @ AZHANA HUSNA ZAINUDEEN¹, SYAHNAZ MOHD AZALI¹ AND NUR HIDAYAH JAMALUDIN¹

¹FOOD SAFETY & QUALITY DIVISION, MINISTRY OF HEALTH MALAYSIA

*ilaila@moh.gov.my

ABSTRACT

Introduction:
Malaysia Total Diet Study 2017/2018 on methyl mercury was conducted by the Food Safety and Quality Division in collaboration with all State Health Departments and selected Food Safety and Quality Laboratories and National Public Health Laboratories.

Objective:
This study aimed to estimate dietary exposure of methylmercury in the adult Malaysian population through consumption of fish.

Methods:
A total of 35 food composite samples from group fish were prepared as “ready for consumption” and tested for methyl mercury. Sampling was taken at identified sampling point in Peninsular Malaysia, Sabah and Sarawak. Dietary exposure was calculated by multiplying the consumption data with concentration of methyl mercury in the respective food item, and divided by body weight.

Results and Discussion:
Results showed that 86% of the composite samples were not detected with methylmercury. Methylmercury was detected in sea fish only and the highest methylmercury level was 0.18 mg/kg. From this study dietary exposure for methylmercury among adult Malaysian population was 0.13 μg/kg.bw/week which is below the PTWI of 1.6 ug/kg.bw/week by the Joint FAO/WHO Expert Committee on Food Additives and Contaminant (JECFA). This finding indicates that exposure from methylmercury is unlikely to cause undesirable health effects to the general adult Malaysian population.

Keywords: Total Diet Study, dietary exposure, methyl mercury

References:

GEOGRAPHIC INFORMATION SYSTEM-BASED INTERPOLATION METHOD TO URINARY METAL CONCENTRATIONS IN MALAYSIA

NORAISHAH MOHAMMAD SHAM1*, ZURAHANIM FASHA ANUAL1 AND RAFIZA SHAHARUDIN1

1ENVIRONMENTAL HEALTH RESEARCH CENTRE, INSTITUTE FOR MEDICAL RESEARCH, MINISTRY OF HEALTH MALAYSIA, 40170 SHAH ALAM, SELANGOR

*noraishah.ms@moh.gov.my

ABSTRACT

Introduction:
In recent years, there has been an increasing ecological and global public health concern associated with environmental contamination by arsenic (As), cadmium (Cd), nickel (Ni) and lead (Pb).

Objective:
This study aims to visualize distribution of these heavy metals concentration in urine samples of respondents from all states in Malaysia.

Methods:
This cross-sectional study compiled urine samples from 817 Malaysian adults from all states in Malaysia between October 2017 and March 2018 (Ethics Approval NMRR-18-204-39712 (IIR)). Spatial inverse distance weighted (IDW) interpolation method was used to derive a map, which illustrate the distribution of As, Cd, Ni and Pb from urine samples. IDW interpolation showed the spatial prediction in raster format. Moran’s I Index was also used to assess the spatial autocorrelation in the study area for all the metals.

Results and Discussion:
The mean concentration for Ni and Cd was highest in Perak, whilst As and Pb were predominantly in Terengganu and Kelantan. Moran’s I index showed significant spatial autocorrelation in the study area for all metals except for Pb (p-value<0.05). From the IDW, individuals living in North East and Western region had the highest concentrations for As and Cd. However, those in the Central region were less exposed (Ni, Cd and As). In comparison to individuals living in other parts of the region, the North and North West region were less exposed to Pb. In conclusion, this study provides a quantitative information based on the interpolation method and spatial autocorrelation for heavy metals in urine samples. With these geographic information system (GIS) techniques, health authorities can better predict in assessing exposure to heavy metals in population of an area to prioritize control and preventive measures.

Keywords: heavy metal, GIS, interpolation, urine, Malaysia

References:
Oral Session 3:
Herbal/Natural Product Toxicology

Kindly scroll/flip next few pages to view the selected abstract
OCHRATOxin A AND antioxidAnt ACTIVITIES OF RoASTed COFFEE BEANS In Phnom PenH, CAmBODIA

OEUng SOKUnVARY1, PIYAda SONGSeRSMaKU2 AND SUPATRA POrASUPHaTANA3*

1MASTER IN TOXICOLOGY PROGRAM/ FACULTY OF PHARMACEUTICAL SCIENCES, KNON KAEUniVerSiTy,
2-3DIVISION OF PHARmacOGnOSY AND TOXICOLOGY/FACULTY OF PHARMCEUTICAL SCIENCES, KNON KAEn UNiVerSiTy

*psupatra@kku.ac.th

ABSTRACT

Introduction:
Coffee is one of the major commodities being traded all over the world. The major mycotoxin contaminated in coffee is ochratoxin A (OTA), a toxin that relates to nephrotoxic, teratogenic, carcinogenic and immunotoxic effects. Coffee is also known as a potential source of antioxidants. So far, there is no study of OTA contamination and antioxidant activities in coffee in Cambodia.

Objective:
The aims of this study were to determine the contamination of OTA, potential antioxidant activities and correlation between OTA levels and antioxidant activities of roasted coffee beans in Cambodia.

Methods:
Fouaty samples of roasted coffee beans, imported from different countries and locally grown, were collected from four local markets in Phnom Penh. Coffee samples were extracted and OTA levels were determined by HPLC with a fluorescence detector. The method validation was performed. Total polyphenolic contents (TPC) and potential antioxidant activities were also determined in coffee. Antioxidant activities were measured by diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power assays (FRAP).

Results and Discussion:
The validation parameters showed that the analysis was acceptable. OTA levels in 9 samples (22.5%) were detectable, while 3 samples (7.5%) contained OTA above the LOQ (0.62-1.12 ng/g). Approximately, 50% of samples from Brazil and Cambodia were contaminated with OTA. None of the coffee samples contained OTA higher than the limits regulated by the European Union. OTA levels were higher in Robusta than in Arabica coffee. Total polyphenolic contents ranged from 17.83-33.03 mg GAE/g, while antioxidant activity determined by DPPH and FRAP assays ranged from 71.01%-81.95% and 36.48-115.78 mg Trolox/g, respectively. Antioxidant activities in Robusta were significantly higher than in Arabica coffee. No correlation between OTA and antioxidant activities was found. This report is the first survey of OTA contamination in coffee in Cambodia. The result can be beneficial for risk assessment approach to minimize mycotoxin exposure through coffee consumption in Cambodia.

Keywords: roasted coffee bean, mycotoxins, ochratoxin A, antioxidant, Cambodia

References:
ANTIOXIDANT ACTIVITIES AND ANTI-INFLAMMATION OF COELONIN FROM DENDROBIUM SCABRILINGUE

HASSERI HALIM1,2*, SALFARINA RAMLI1,2, IHSAN SAFWAN KAMARAZAMAN2,3, VISARUT BURANASUDRA4, BOONCHOO SRITULARAK4 AND PORNCHAI ROJSITTHISAK4

1INTEGRATIVE PHARMACOGENOMICS INSTITUTES (IPROMISE), 2FACULTY OF PHARMACY, UNIVERSITI TEKNOLOGI MARA, MALAYSIA, 3FOREST RESEARCH INSTITUTE MALAYSIA (FRIM), MALAYSIA, 4FACULTY OF PHARMACEUTICAL SCIENCES, CHULALONGKORN UNIVERSITY, THAILAND.

*hasseri2945@uitm.edu.my

ABSTRACT

Introduction:
Reactive oxygen species (ROS) and inflammation have been associated to the development of a wide range of diseases such as cancer, metabolic disorder, and cardiovascular disease. Plants produce variety of phytochemicals, thus studies of antioxidant and anti-inflammatory activities of phytochemicals are still of interest. Coelonin, a phenolic compound isolated from species of orchids including Dendrobium scabrilingue.

Objective:
This study aimed to investigate the antioxidant activity of coelonin in vitro. The effects of coelonin on H2O2-induced oxidative stress and LPS-induced inflammation in RAW264.7 cells were assessed.

Methods:
MTT assay was carried out to determine the non-toxic dose of coelonin. Next, the antioxidant and anti-inflammatory effects of coelonin was evaluated. The oxidative stress and inflammation of RAW 264.7 cells were induced by hydrogen peroxide (H2O2) and lipopolysaccharide (LPS) respectively. Intracellular ROS levels were evaluated by using DCFDA assay. The SOD, GPx and CAT activity was measured by using SOD, GPx and CAT cellular Assay kit. Nitrite oxide production level was measured using Griess Reaction assay.

Results and Discussion:
From the cytotoxicity results, the non-toxic concentration of coelonin was found below 20μM. Pretreatment of the cells with the non-toxic doses of coelonin prior to H2O2 exposure significantly decreased production of intracellular ROS in a dose dependent manner. At the concentration of 20μM, coelonin decreased intracellular ROS in RAW264.7 cells by 75%. Pre-incubation of the cells with coelonin prior to H2O2 exposure significantly prevented a decrease in SOD, GPx and CAT levels in a dose dependent. The results indicate that the compound enhanced antioxidant enzyme activities in H2O2 treated RAW264.7 cells. Pretreatment of the cells with coelonin prior to LPS exposure significantly decreased NO and TNF-α secretion in a dose dependent manner. The present study shows the antioxidant activity and ability of coelonin to prevent LPS-induced inflammation in RAW264.7 cells.

Keywords: coelonin, RAW264.7, ROS, antioxidant, anti-inflammation

References:
FISH ACUTE TOXICITY TESTING OF LITSEA GARCIAE METHANOLIC EXTRACT IN ADULT ZEBRAFISH

RADUAN, SZR1*, AHMED, QU2, SHAIKH, MF3, RUSMILI, MRA1 WAN SULAIMAN, WMA1, HAMDI. MM4, AND KASMURI, AR1

1DEPT OF BASIC MEDICAL SCIENCES, KOP, IIUM 2DEPT OF PHARMACEUTICAL CHEMISTRY, KOP, IIUM 3JEFFREY CHEAH SCHOOL OF MEDICINE AND HEALTH SCIENCES, MONASH UNIVERSITY MALAYSIA AND 4DEPT OF PRECLINICAL SCIENCES, FMHS, UNIMAS

ABSTRACT

Introduction:
Litsea garciae (LG) bark is currently used in Sarawak by locals to treat various diseases traditionally. However, there is no preliminary study conducted to evaluate the respective plant's acute toxicity up to the present time.

Objective:
The recent study's main objective was to determine the LG bark methanolic extract's acute toxicity in adult zebrafish.

Methods:
The raw LG bark underwent a successive maceration technique and freeze-dried. The methanolic extract was administered in a static system by immersion based on OECD Test Guideline No 203. The acute toxicity test implemented 96 hours of observation for any mortality or visible abnormalities related to the zebrafish's appearance and behaviors (ethical approval IIUM/IACUC-2019(21)).

Results and Discussion:
The test group (limit 100mg/L) and the control group recorded zero mortality and no significant abnormalities. Hence, LC50 was not determined. In agreement, the present findings revealed the significance of relatively safe and less toxic methanolic extract of LG bark for further biomedical applications.

Keywords: Litsea garciae, bark, methanolic, acute toxicity, adult zebrafish

References:
TOXICITY STUDIES OF SUPERCRITICAL FLUID EXTRACT OF LOCAL ZIZIPHUS MAURITIANA (BIDARA) FRUIT

MUHIYUDDIN MD NASIR¹, SAIDATUL HUSNI SAIDIN² AND ARNIDA HANI TEH¹,³*

¹DEPARTMENT OF FOOD SCIENCES, FACULTY OF SCIENCE AND TECHNOLOGY, UNIVERSITI KEBANGSAAN MALAYSIA, 43600 UKM BANGI, SELANGOR, MALAYSIA, ²HERBAL PRODUCT DEVELOPMENT PROGRAMME, NATURAL PRODUCTS DIVISION, FOREST RESEARCH INSTITUTE MALAYSIA (FRIM), 52109 KEPONG, SELANGOR, MALAYSIA, ³INNOVATION CENTER FOR CONFECTIONARY TECHNOLOGY (MANIS), FACULTY OF SCIENCE AND TECHNOLOGY, UNIVERSITI KEBANGSAAN MALAYSIA, 43600 UKM BANGI, SELANGOR, MALAYSIA

*arnida@ukm.edu.my

ABSTRACT

Introduction: Ziziphus mauritiana (bidara) fruit is considered as an underutilized fruit in Malaysia and did not received much attention on its possible health effects. Literature search have shown that studies on Z. mauritiana fruit, especially locally grown are very limited. Hence, this study was initiated to determine the fundamental information on its safety.

Objective: To determine the acute toxicity, cytotoxicity, and genotoxicity of supercritical fluid extract (SFE) of local Z. mauritiana fruit extract.

Methods: Acute toxicity study (FST/2018/ARNIDAHANI/28-NOV./971-DEC.2018-JAN.-2020) was done in Sprague Dawley rats following OECD Test No.420. A total of 48 rats were divided into 4 groups receiving 0 (control), 1, 2.5 and 5 g extract/kg body weight, accordingly. Cytotoxicity study was done by using the MTT test on V79-4 normal cell lines, with water extract as comparison. Genotoxicity study was done through micronucleus assay with acridine orange staining.

Results and Discussion: From the acute toxicity results, all rats survived during the course of study period with no evidence of clinical or toxic manifestation. The body weight, food and water consumption, organs’ weights and biochemical parameter of treated animals were not significantly different (p>0.05) compared with the control group during the period of study. Cytotoxicity results show Z. mauritiana SFE extract demonstrated a cytotoxicity effect (IC50: 0.48 mg/ml) towards the V79-4 cells, whereas the water extract showed otherwise (IC50: 175.67 mg/ml). Lastly, the SFE extract did not show genotoxic effect based on the parameters studied. As a conclusion, this study shows the safety information of Z. mauritiana SFE fruit extract.

Keywords: supercritical fluid extraction, acute toxicity, cytotoxicity, genotoxicity, Ziziphus mauritiana

References:
PART IV: ABSTRACTS OF THE ORAL SESSION’S PRESENTATION

Oral Session 4: Genotoxicity

Kindly scroll/flip next few pages to view the selected abstract
PHARMACOLOGICAL ACTIVATION OF AUTOPHAGY RESTORES CELLULAR HOMEOSTASIS IN ULTRAVIOLET-(B)-INDUCED GENOTOXIC STRESS RESPONSE IN SKIN

SHEIKH A. UMAR1,2, NAIKO0 H. SHAHID1,2, LONE A. NAZIR1,2, MALIK A. TANVEER1,2, GUPTA DIVYA1,2, SAJIDA ARCHO01,2, SHARMA R. RAGHU1,2 AND SHEIKH A. TASDUQ1,2*

1 ACADEMY OF SCIENTIFIC & INNOVATIVE RESEARCH (ACSIR), GHAZIABAD, INDIA, 2 PK-PD TOXICOLOGY DIVISION, CSIR-INIDAN INSTITUTE OF INTEGRATIVE MEDICINE, JAMMU & KASHMIR, INDIA

*stabdullah@iiim.res.in

ABSTRACT

Introduction:
Ultraviolet-B exposure to skin causes photo-damage and acts as the primary etiological agent in photocarcinogenesis. Recently, autophagy has been found to positively regulate skin homeostasis by enhancing DNA damage recognition. Here, we investigated the geno-protective roles of autophagy in primary Human Dermal Fibroblasts (HDFs) against UV-B-induced genotoxic stress response.

Objective:
The main objective in undertaking this study is to provide experimental evidences into the roles of autophagy in regulating UV-(B)–induced genotoxic stress response in primary human dermal fibroblasts.

Methods:
Molecular biology tools including western blotting, RNA interference and biochemical assays were used. Confocal and fluorescent microscopy based assays were employed to study protein expression and calcium signalling, and GFP-RFP-LC3B puncta assay for assaying autophagosome formation to follow the experimental findings.

Results and Discussion:
We found that UV-(B)-irradiation to HDFs leads to induction of DNA photo-adducts (CPD & 6-4PP). Further, our results revealed that impaired autophagy is an immediate molecular event induced following exposure of UV-B–irradiation to primary HDFs and pharmacological activation of autophagy regulates DNA Damage Response via regulation of oxidative and endoplasmic reticulum stress responses. Autophagy deprivation to HDFs via P62 silencing augments the UV-B-induced DNA damage response whereas Atg7 silenced HDFs reveal an unexpected consequence by decreasing the UV-B-induced DNA damage via over activation of AMPKα as an adaptive response to genotoxic stress caused due to autophagy deficiency. Our findings provide critical insights that indicate the regulatory and functional role of autophagy in regulating UV-B induced photo-damage and support the potential role of interventional autophagy as promising therapeutic strategy against skin photodamage disorders.

Keywords: UV-B, Oxidative stress, Endoplasmic Reticulum Stress, Autophagy, DNA Damage Response

References:
THE PRESENCE OF GENOTOXIC AND CARCINOGENIC PHYTOCHEMICALS IN MEDICINAL PLANTS BASED ON THE MALAYSIAN HERBAL MONOGRAPH

NUR AZRA MOHAMAD PAUZI1,2*, ROZAINI ABDULLAH3, MANRAJ S CHEEMA3, AMIN ISMAIL4 AND AHMAD ROHI GHAZALI5

1MINISTRY OF HEALTH MALAYSIA, 2DEPARTMENT OF ENVIRONMENTAL AND OCCUPATIONAL HEALTH, 3DEPARTMENT OF BIOMEDICAL SCIENCES, 4DEPARTMENT OF NUTRITION, FACULTY OF MEDICINE AND HEALTH SCIENCES, UNIVERSITI PUTRA MALAYSIA AND 5DEPARTMENT OF BIOMEDICAL SCIENCES, FACULTY OF HEALTH SCIENCES, UNIVERSITI KEBANGSAAN MALAYSIA.

*gs56085@student.upm.edu.my

ABSTRACT

Introduction:
Medicinal plants are essential in Malaysia’s long history of traditional and complementary medicine. The scientific data of 76 Malaysian medicinal plants are published in the Malaysian Herbal Monograph (MHM). Although phytochemicals are vital for human health, certain phytochemicals, such as aritolochic acid, safrole and lasicoarpine, can induce toxicity including hepatotoxicity, genotoxicity and carcinogenicity.

Objective:
The objective of this study was to screen for the potential presence of genotoxic and carcinogenic phytochemical constituents in the 76 published monographs of Malaysian medicinal plants.

Methods:
Plant species containing genotoxic and carcinogenic agents were identified by screening the phytochemical profiles of the 76 medicinal plants published in the MHM. Next, the number of registered natural products containing those plants were generated using the local official engine database search (QUEST3+ Product Search).

Results and Discussion:
11 out of the 76 medicinal plants, including Alpinia galanga, Cinnamomum verum, Myristica fragrans, Ocimum basilicum, Orthosiphon aristatus, Piper betle, Piper sarmentosum, Citrus hystrix, Chromolaena odorata, Gymura procumbens and Areca catechu were found to contain genotoxic carcinogen including alkenylbenzene such as methyleugenol and safrole, and pyrrolizidine alkaloid such as lasiocarpine and retrorsine. Through QUEST3+ search, 412 registered natural products have been found to contain these plants species as ingredients. Additionally, 130 registered products containing other plants species known to be genotoxic and carcinogenic such as Tussilago farfara, Asarum spp and Gymura spp were also identified. In conclusion, consumption of medicinal plants in natural products may expose Malaysians to genotoxic and carcinogenic phytochemicals. Thus, exposure assessments should be conducted to minimize the potential health risks in Malaysian population.

Keywords: Alkenylbenzene; Carcinogenic; Genotoxic; Medicinal plant; Pyrrolizidine alkaloid

References:
ROLE OF NRF2/NQO1 PATHWAY IN MEDIATED ARSENITE-INDUCED MALIGNANT TRANSFORMATION

QI KONG¹, HANYI DENG¹, CHUNCHUN LI¹, XIAOJUAN WANG¹, KOICHI KATO², JIE ZHANG¹, KENZO YAMANAKA², YAN AN*¹

¹ SOOCHOW UNIVERSITY, SUZHOU 215123, JIANGSU, CHINA, ² NIHON UNIVERSITY, CHIBA 274-8555, JAPAN

*dranyan@126.com

ABSTRACT

Introduction:
In arsenic toxicity, activation of the erythroid 2-related factor 2 (NRF2) pathway is regarded as a driver of cancer development and progression; however, the mechanisms by which NRF2 gene expression regulates cell cycle progression and mediates pathways of cellular proliferation and apoptosis in arsenic-induced lung carcinogenesis are poorly understood.

Objective:
To know the mechanisms underlying NRF2 and its target gene proteins in regulating arsenite-induced dysregulation of cellular proliferation.

Methods:
In this study, we explored the regulatory functions of NRF2 expression and its target genes in immortalized human bronchial epithelial (HBE) cells continuously exposed to 1.0 µM sodium arsenite over approximately 43 passages (22 weeks).

Results and Discussion:
The experimental treatment induced malignant transformation in HBE cells, characterized by increased cellular proliferation and soft agar clone formation, as well as cell migration, and accelerated cell cycle progression from G0/G1 to S phase with increased levels of cyclin E-CDK2 complex, decreased cellular apoptosis rate. Moreover, we observed a sustained increase in NRF2 protein levels and decreased cellular apoptosis rate. Silencing NRF2 expression with small interfering RNA (siRNA) in arsenite-transformed (T-HBE) cells reversed the malignant phenotype. Further, siRNA silencing of NQO1 significantly decreased levels of the cyclin E-CDK2 complex, inhibiting G0/G1 to S phase cell cycle progression and transformation to the T-HBE phenotypes. This study demonstrated a novel role for the NRF2/NQO1 signaling pathway in mediating arsenite-induced malignant transformation by increasing the expression of cyclin E-CDK2, and accelerating the cell cycle and cell proliferation. Arsenite promotes activation of the NRF2/BCL-2 signaling pathway inhibited CHOP increasing cellular resistance to apoptosis and further promoting malignant transformation.

Keywords: Arsenite; Cellular proliferation; Cellular apoptosis; NRF2; NQO1

References:
OVERVIEW OF GENOTOXICITY FIELD IN MALAYSIA ENVIRONMENT

MOGANADA MURTEY

1 SCHOOL OF DENTAL SCIENCES, HEALTH CAMPUS, UNIVERSITI SAINS MALAYSIA, 16150 KUBANG KERIAN, KELANTAN, MALAYSIA

*moganadasmurtey@usm.my

ABSTRACT

Introduction: Environmental pollution presents the most damaging impact on ecosystem change, as well as public health due to increasing morbidity and mortality. Environmental factors are powerful forces in reshaping human genomes where throughout their development, human have been exposed to various environmental genotoxicants. This exposure may increase risks of cancers and other diseases to human health.

Objective: The aim of the study is to discuss the general overview of the genotoxicity field in Malaysian environment and the genotoxicity of some environmental genotoxicants are discussed.

Methods: Comprehensive overview of the literature synthesizing the findings of the literature retrieved from searches of computerized databases, hand searches and authoritative texts.

Results and Discussion: Environmental pollution is a complex issue because it can take different forms and the effects are generally devastating. Environmental exposure to genotoxic compounds to produce adverse change at the cellular and organismal levels as they can lead to deadly diseases including cancer and can also be passed through future generations, affecting population gene pool and structures. Because of the potential health hazard represented by exposure to genotoxic chemicals, it is important that all chemicals for which there is possible human exposure be screened for genotoxic activity. If genotoxic hazard is detected, then the risks of exposure can be assessed, and the use of the chemical controlled and when appropriate eliminated from the market and the environment. This overview will discuss the role of genotoxicity field in Malaysian environment cases encompasses soil, water and air.

Keywords: genotoxicity, environment, soil, water, air

References:
PART IV: ABSTRACTS OF THE ORAL SESSION’S PRESENTATION

Oral Session 5: Mechanistic Toxicology

Kindly scroll/flip next few pages to view the selected abstract
COMPREHENSIVE HISTONE, DNA METHYLATION, AND MRNA EXPRESSION ANALYSIS OF MURINE LIVER REPEATEDLY EXPOSED TO CHEMICALS

J. KANNO1,2*, K. AISAKI1, R. ONO1, AND S. KITAJIMA1

1DIVISION OF CELLULAR & MOLECULAR TOXICOLOGY, CENTER FOR BIOLOGICAL SAFETY & RESEARCH, NATIONAL INSTITUTE OF HEALTH SCIENCES, KANAGAWA, JAPAN. 2ENVIRONMENTAL BIOLOGY LABORATORY, FACULTY OF MEDICINE, UNIVERSITY OF TSUKUBA, IBARAKI, JAPAN.

* jkanno@hh.iij4u.or.jp

ABSTRACT

Introduction:
The Percellome Project aims at reinforcing and replacing the “safety factor” in toxicology by comprehensively identifying the transcriptomic networks induced by xenobiotics in murine organs.

Objective:
The Project started off by gathering high-quality transcriptomic data of single oral dosing studies, followed by a new repeated dosing protocol to gain chronic toxicity information from a very short small-scale study.

Methods:
“Percellome” normalization method was developed to generate absolute copy numbers of mRNAs in a “per one cell” basis from the Affymetrix GeneChipsa. Data of mouse liver after a single oral gavage (4 time points (2, 4, 8, and 24 hours after dosing) x 4 dose levels (control, low, middle, and high), triplicate, 48 GeneChip data per chemical/organ from 48 mice) on 160 chemicals are compiled. A new repeated dosing study protocol consists of 14-day repeated dosing to all 48 mice followed by dosing on 15 day with the single dose study protocol mentioned above. GeneChip, whole genome bisulfite analysis (WGBA) and ChIP-seq against H3K4me3, H3K27me3, H3K27Ac, and H3K9me3 were obtained from a same sample and analyzed for the effect of repeated dosing on DNA methylation and Histone modification.

Results and Discussion:
mRNA, DNA methylation and histone data for CCl4, clofibrate, and valproic acid were analyzed. Firstly, the effect of repeated dosing on mRNA expression can be interpreted as a combination of two elements, i.e. baseline response (BR: gradual shift of the basal mRNA expression level by repeated dosing) and transient response (TR: alteration of the magnitude and/or pattern of the quick response in 2 to 24 hours). The BR and TR were generally linked in CCl4, i.e. lower BR linked to suppressed TR and vice versa. The link were in some part chemical dependent. However, 14-day CCl4 pre-treatment did not alter DNA methylation, whereas ChIP-seq revealed that BR and TR of mRNA of some characteristic genes was in good correlation with histone modification. Analysis on other chemicals will be presented. (Supported by Health and Labor Sciences Research Grant of MHLW, Japan)

Keywords: Per cell normalization, gene expression network, toxicity prediction, epigenetics, transcriptomics

References:
FIBROBLAST GROWTH FACTOR RECEPTOR 4 AS A POTENTIAL DRUGGABLE TARGET FOR TRIPLE NEGATIVE BREAST CANCER

LI YING CHEW1*, ADRIAN BOEY1, YONG QIN KOH1, HAN KIAT HO1*

1 DEPARTMENT OF PHARMACY, FACULTY OF SCIENCE, NATIONAL UNIVERSITY OF SINGAPORE, SINGAPORE

* phahohk@nus.edu.sg

ABSTRACT

Introduction:
Triple negative breast cancer (TNBC) does not respond to hormonal therapy and therefore cytotoxic chemotherapy remains the main systemic treatment for TNBC. Fibroblast growth factor receptor 4 (FGFR4) and its downstream signaling pathway are involved in TNBC cell survival. Targeting FGFR4, which are differentially expressed in cancer cells may present a novel strategy for TNBC treatment.

Objective:
To investigate the effect of reversible and/or irreversible FGFR4 inhibitors on FGF19/FGFR4 signaling pathway involvement in regulating cellular proliferation and survival of MDA-MB453 cells.

Methods:
MDA-MB453 cells were cultured in Dulbecco’s Modified Eagle Medium containing 10% fetal bovine serum and were treated with different FGFR4 inhibitors; GFG401, H3B-6257 and BLU9931 at concentration range of 0.02-10µM. Caspase 8 activity and the proliferation of MDA-MB453 cell following FGFR4 inhibitors treatment were assessed using Caspase-Glo® 8 assay and MTS assay, respectively. Key proteins involved in FGF19/FGFR4 signaling pathway was assessed using immunoblot.

Results and Discussion:
FGF401 had the greatest impact on MDA-MB453 cell proliferation with IC50 4.4±0.8 nm, followed by H3B-6257 (106.0±36.5 nm) and BLU9931 (110.6±32.8 nm). The caspase 8 activity of MDA-MB453 cells downregulated by ~12%, ~10%, ~15%, following treatment with FGF401, H3B-6257, and BLU9931, respectively, suggesting that treatment with FGFR4 inhibitors may not affect cell apoptosis through caspase 8. Immunoblot analyses showed upregulated pERK expression in FGFR4 inhibitors treated cells compared to control at 24h and 48h, suggesting that FGFR4 inhibitors might not affect cell viability via ERK pathway. The effect of FGFR4 inhibitors on PI3K/Akt pathway is required. Nevertheless, reversible-covalent inhibitor (FGF401) compared to irreversible inhibitor of FGFR4 (H3B-6257 and BLU9931) showed greater potency on MDA-MB453 cell. FGFR4 inhibitors might provide a druggable alternative over conventional cytotoxic chemotherapy for improved safety and efficacy for TNBC treatment.

Keywords: Cancer, FGFR4 inhibitors, Caspase 8, Cell proliferation, FGFR signaling pathway

References:
CERIUM OXIDE NANOPARTICLES AS A POTENTIAL THERAPY FOR HEPATIC FIBROSIS SYMPTOMS

ADRIAN BOEY¹, LEONG SHU QING¹, SAYALI BHAVE¹, HO HAN KIAT¹

DEPARTMENT OF PHARMACY, FACULTY OF SCIENCE, NATIONAL UNIVERSITY OF SINGAPORE. 18 SCIENCE DRIVE 4, SINGAPORE 117559, SINGAPORE.

*toxicity@toxicology.com

ABSTRACT

Introduction: Liver fibrosis is a serious hepatic disease condition, and is mediated primarily by hepatic stellate cells (HSCs). Certain nanoparticles have been found to be able to reduce liver fibrosis in cultured HSCs. Cerium oxide nanoparticles (CeNPs) potentially reduce liver fibrosis symptoms in the hepatic stellate cell line LX2.

Objective: The study aimed to demonstrate that CeNPs are a potential therapeutic method for relieving liver fibrosis symptoms.

Methods: The human hepatic stellate cell line LX2 was used to investigate the effects of CeNPs. TGF-β-activated LX2 cells were exposed to CeNPs, and fibrosis marker genes measured using RT-PCR and western blots. We further measured other HSC phenotypes, such as cell mobility, oxidative stress, autophagy and matrix remodelling.

Results and Discussion: We determined that fibrosis was inhibited in CeNP-treated cells through a reduction in the expression of marker genes, such as collagen-I and smooth muscle actin. When we investigated the mechanisms underlying this reduction, we found that oxidative stress was reduced in treated cells, leading to a reduction in TGF-β signalling, hence HSC activation. This was further confirmed by the observation that treated cells showed reduced cell mobility, altered matrix remodelling, and reduced cell contractability. This suggests that CeNPs represent a potential therapeutic option for liver fibrosis.

Keywords: Liver, fibrosis, nanoparticles

REDUCTION OF ARSENIC TOXICITY THROUGH NUCLEAR FACTOR E2 RELATED FACTOR 2 ACTIVATION MEDIATED BY THE (E)-2-ALKENALS IN CORIANDRUM SATIVUM L. LEAF EXTRACT

HANAKO AOKI1, YUMI ABIKO1,2,3, MIYUKI OKADA3, MAI MIZOKAWA4, AND YOSHITO KUMAGAI1,2,3,*

1GRADUATE SCHOOL OF COMPREHENSIVE HUMAN SCIENCES, UNIVERSITY OF TSUKUBA, 2FACULTY OF MEDICINE, UNIVERSITY OF TSUKUBA, 3MEDICAL SCIENCES, MEDICINE GROUP, UNIVERSITY OF TSUKUBA, 4GRADUATE SCHOOL OF ENVIRONMENTAL SCIENCES, UNIVERSITY OF TSUKUBA

*yk-em-tu@md.tsukuba.ac.jp

ABSTRACT

Introduction:
The Coriandrum sativum L. leaf hexane extract (CSLE) contains various aliphatic electrophiles. We have previously found that (E)-2-alkenals in the extract are essential for the activation of the Kelch-like-ECH-associated protein 1 (Keap1)/nuclear factor E2 related factor 2 (Nrf2) system associated with cytoprotection. We hypothesized that CSLE also activates Nrf2 in vivo and represses xenobiotic toxicity.

Objective:
The aim of this study was to determine whether or not CSLE containing (E)-2-alkenals could activate Keap1/Nrf2 system to suppress toxicity of inorganic arsenite (iAsIII) in vitro and in vivo.

Methods:
We determined the modification site of recombinant murine Keap1 (mKeap1) by (E)-2-decanal using ultra-performance liquid chromatography-elevated collision energy mass spectrometry (UPLC-MS²). Human liver cell line (HepG2) and C57BL/6J mice were pretreated with CSLE or (E)-2-alkenals, and then cytotoxicity of iAsIII was assessed by MTT assay. Arsenite level was measured by inductively coupled plasma mass spectrometry (ICP-MS). The University of Tsukuba Animal Care and Use Committee approved protocols for animal experiments.

Results and Discussion:
UPLC-MS² analysis revealed that (E)-2-decanal modified mKeap1 at Cys241, Cys249, Cys257 and His274. Exposure of HepG2 cells to CSLE, (E)-2-decanal upregulated Nrf2-related downstream genes, such as Heme Oxygenase-1, the GCL modifier subunit, the GCL catalytic subunit and MRP3, which were involved in cytoprotection against iAsIII. Pretreatment with CSLE or (E)-2-butenal, a prototype of (E)-2-alkenal, prior to exposure to iAsIII reduced iAsIII-induced cytotoxicity in HepG2 cells and the intracellular As level. Oral administration of CSLE to mice upregulated downstream proteins of Nrf2 and suppressed accumulation of As in liver tissue. The present study indicates that CSLE containing (E)-2-alkenals diminishes iAsIII-mediated toxicity through activation of the Keap1/Nrf2 system. Because the C. sativum leaf contains a mixture of aliphatic electrophiles, the intake of this vegetable could be an effective approach to activate the Keap1/Nrf2 system, leading to excretion of As from the body.

Keywords: Coriandrum sativum L., cilantro, Nrf2, arsenite, (E)-2-decenal, (E)-2-alkenal

References:
PART IV: ABSTRACTS OF THE ORAL SESSION’S PRESENTATION

Oral Session 6:
Nanotoxicology

Kindly scroll/flip next few pages to view the selected abstract
SILVER NANOPARTICLES INDUCED APOPTOSIS IN HIPPOCAMPAL NEURONS VIA MITOCHONDRIAL DYSFUNCTION

XIAORU CHANG, JIANGYAN LI, MENGTING SHANG, SHUYAN NIU, WENLI ZHANG, ZUOYI SUN, YUNJING LI, MENG TANG, YUYING XUE*

KEY LABORATORY OF ENVIRONMENTAL MEDICINE AND ENGINEERING, MINISTRY OF EDUCATION, SCHOOL OF PUBLIC HEALTH, SOUTHEAST UNIVERSITY, NANJING 210009, CHINA

yyxue@seu.edu.cn

ABSTRACT

Introduction:
Silver nanoparticles (AgNPs) have been reported to accumulate in the central nervous system (CNS) and induce neurotoxicity. Although previous studies have reported toxicity in neuronal cell lines after AgNPs exposure, mechanistic research is largely unknown in biological safety and neurotoxicity, especially in the hippocampus.

Objective:
This study aimed to investigate mechanism of hippocampal neuronal apoptosis and role of reactive oxygen species (ROS) and Ca2+ level in mitochondrial dynamics.

Methods:
The apoptosis ratio, ROS production and Ca2+ level were detected by flow cytometer. Mitochondrial morphology and function were observed by transmission electron microscopy (TEM), and JC-1 and ATP detection assay kit, respectively. Expressions of mRNA and protein related to mitochondria-mediated apoptosis were analyzed by RT-qPCR and western blot, respectively. Animals experiments were approved by the Animal Experimental Ethics Committee of Southeast University (No.20190226007).

Results and Discussion:
As a result, apoptosis was observed in hippocampal neuronal HT22 cell line and hippocampal neurons of mice intravenously injected with AgNPs. Additionally, mitochondria could be severely disturbed by AgNPs in morphology and function, characterized by mitochondrial fission and disappearance of cristae, ROS overproduction and significant reduction in mitochondrial ATP and mitochondrial membrane potential (MMP). Mechanistically, this effect is mediated by phosphorylation and translocation to mitochondria of dynamin-related protein 1 (Drp1) at a serine 616 (S616) by Ca2+/calmodulin-dependent kinase II (CaMKII), which partly dependent on the ROS-mediated Ca2+ overload. Fortunately, additional antioxidants and calcium inhibitors pretreatment could mitigate apoptosis and cytotoxicity through improvement of mitochondrial function. In conclusion, our data basically revealed that AgNPs induced apoptosis by promoting excessive Drp1 phosphorylation and mitochondrial fission. ROS-mediated intercellular Ca2+ level was the key effector mediating AgNPs-induced Drp1 phosphorylation and mitochondrial dysfunction.

Keywords: Silver nanoparticles, Mitochondria, Drp1, Oxidative stress, Ca2+

References:
PROTEIN CORONA MITIGATED THE TOXICITY OF CADMIUM TELLURIDE QUANTUM DOTS TO MACROPHAGES BY TARGETING MITOCHONDRIA

NA LIU¹, MENG TANG¹*, YING LIANG¹, TINGTING WEI¹, LINGYUE ZOU¹ AND XUE LIANG¹

¹KEY LABORATORY OF ENVIRONMENTAL MEDICINE AND ENGINEERING, MINISTRY OF EDUCATION; SCHOOL OF PUBLIC HEALTH, SOUTHEAST UNIVERSITY, NANJING, CHINA

*e™@seu.edu.cn

ABSTRACT

Introduction:
The immunotoxicity of cadmium telluride quantum dots (CdTe QDs) targeting macrophages has been documented, and the protein corona (PC) adsorbed on particles will affect their toxicity. Here, we further investigated how does PC affect the adverse effect of CdTe QDs on mitochondria about their structure, function, quantity, morphology, and mitochondrial quality control in macrophages.

Objective:
This study aims to provide a view to alleviate the toxicity of CdTe QDs from both the synthesis and mechanism aspects, and to consolidate their safe use.

Methods:
Mouse leukemic monocyte-macrophage cells (RAW264.7) were employed as a model. The PC-CdTe QDs complexes were obtained through incubating QDs with PBS containing 10% FBS. Cells were exposed to 0.1, 0.5, and 1.0 μM CdTe QDs and PC-CdTe QDs complexes for 24 h, and corresponding fluorescent probes and kits were used to detect mitochondrial structural damage and dysfunction. Western blot was used to measure the level of key protein molecules relating to mitochondrial quality control.

Results and Discussion:
The protein corona alleviated the inhibition of CdTe QDs on mitochondrial activity, the damage to mitochondrial membrane, the level of reactive oxygen species, and the reduction of ATP. Also, CdTe QDs increased the number of mitochondria in macrophages, while the PC-CdTe QDs complexes did not. In line with this, the mitochondria of macrophages showed different morphology of mitochondrial network, CdTe QDs transformed the network into fragment, punctate and short rod, while PC-CdTe QDs complexes altered the mitochondrial network to a highly branched state, which was related to the imbalance of mitochondrial dynamic (fission and fusion). Mechanically, CdTe QDs promoted mitochondrial fission and inhibited mitochondrial fusion, while protein corona reversed this trend. Besides, CdTe QDs promoted the expression of signaling molecules related to mitochondrial biogenesis including PGC-1α-NRF1/NRF2-TFAM, while PC-CdTe QDs complexes played opposite role; with regard to mitophagy, these two materials showed the same promoting effect.

Keywords: quantum dots, protein corona, mitochondrial quality control

References:
TOXICITY OF CURCUMIN NANOPARTICLES IN ALVEOLAR MACROPHAGE: EFFECTS OF SURFACE CHARGES

WING HIN LEE 1*, CHING YEE LOO 1 AND EE LING SIEW 2,3

1 FACULTY OF PHARMACY AND HEALTH SCIENCES, ROYAL COLLEGE OF MEDICINE PERAK, UNIVERSITI KUALA LUMPUR, 2 PUSAT GENIUS@PINTAR NEGARA, UNIVERSITI KEBANGSAAN MALAYSIA AND 3 BIOCOMPATIBILITY AND TOXICOLOGY LABORATORY, UNIVERSITI KEBANGSAAN MALAYSIA

*whlee@unikl.edu.my

ABSTRACT

Introduction:
Curcumin (diferuloylmethane) is a natural dietary polyphenol compound that possesses superior therapeutic potential against various chronic diseases owing to its strong anti-oxidant and anti-inflammatory properties. Although tremendous works have been initiated on the development of this compound, the toxicity of Cur-NPs in healthy cells are overlooked.

Objective:
This study aimed to evaluate the toxic effects of curcumin nanoparticles (Cur-NPs) with alterable surface charges in alveolar macrophages (NR8383).

Methods:
Cur-NPs with different surface charges were prepared with different polymer coatings such as dextran, polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP). The toxicities of fabricated Cur-NPs against NR8383 were evaluated with lactate dehydrogenase assay, intracellular ROS production, reduction of ATP content and membrane depolarization. Apoptosis in NR8383 cells was investigated using flow cytometry analysis with Annexin APC/7AAD staining.

Results & Discussion:
The surface charges of curcumin nanoparticles (~28 nm) coated dextran, PVA and PVP were 0 ± 0.1 mV, - 25.3 ± 1.5 mV and +10.1 ± 0.9 mV, respectively. MTS assay revealed that positively charged Cur-NPs (9.77 µg/ml) exerted the highest cytotoxic effect against NR8383 followed by negatively charged Cur-NPs (13.33 µg/ml) and neutral Cur-NPs (18.68 µg/mL). Surface charge dependent toxicity was also observed for other biological activities in NR8383 such as mitochondrial membrane potential, ATP content and intracellular ROS level which followed the decreasing pattern: positive Cur-NPs > negative Cur-NPs > neutral Cur-NPs. The highest oxidation activity in lysosome and apoptosis (65%) were seen in NR8383 treated with positively charged Cur-NPs.

Keywords: Alveolar macrophage, toxicity, curcumin, nanoparticles, surface charge

References:
MACROPHAGE POLARIZATION AND INFLAMMATION INDUCED BY SILVER NANOPARTICLES VIA AUTOPHAGY IN BV2 CELLS

MENGTING SHANG¹, XIAORU CHANG², SHUYANNIU³, JIANGYAN LI⁴, WENLI ZHANG⁵, TIANSHU WU⁶, TING ZHANG⁷, MENG TANG⁸ AND YUYING XUE⁹*

KEY LABORATORY OF ENVIRONMENTAL MEDICINE AND ENGINEERING, MINISTRY OF EDUCATION, SCHOOL OF PUBLIC HEALTH, SOUTHEAST UNIVERSITY, NANJING 210009, CHINA

* yyxue@seu.edu.cn

ABSTRACT

Introduction:
As the release of silver nanoparticles (AgNPs) in the environment continues to increase, concerns about their potential toxicity to humans are heightened. AgNPs can enter the brain through multiple pathways, and microglia, as immune cells of the central nervous system, are rapidly activated in brain injury. However, AgNPs induce neuroinflammation and its mechanisms have not been well characterized.

Objective:
In this study, we investigated the possible molecular mechanisms of nanosilver-induced neurotoxicity by exploring changes in microglia polarization, inflammatory response, and autophagy-related proteins.

Methods:
We tested cell viability using the CCK-8 assay. The expressions of inflammation-related genes in microglial cell line (BV2) after exposure to AgNPs were detected by qRT-PCR. Flow cytometry and Western Blot were used to detect the alterations of phenotypic proteins and autophagy-related proteins, respectively. Autophagosomes were observed using transmission electron microscopy. The cells were treated with autophagy inhibitor to explore the molecular mechanism of AgNPs-induced microglia polarization.

Results and Discussion:
We found that exposure of BV2 cells to AgNPs (5 μg/mL) for 12 or 24 h resulted in increased mRNA expression of pro-inflammatory cytokines and decreased mRNA expression of anti-inflammatory cytokines. With 5 μg/mL AgNPs for 2, 6, 12, 24 h exposure increased M1 markers of iNOS expression and decreased the expression of M2 markers of CD206 in a time-dependent manner in BV2 cells. Meanwhile, the expression of inflammatory proteins IL-1β and NF-κB increased significantly. AgNPs induced increase in intracellular autophagosome and upregulation of LC3II, Beclin1, and p62 expression levels. The autophagy inhibitor 3-Methyladenine caused more AgNPs-treated microglia polarized to M1 pro-inflammatory phenotypes in BV2 cells. Increased expression of inflammation-related mRNA and protein in BV2 cells when autophagy was blocked. This study confirms that AgNPs inhibits the pro-inflammatory phenotypic polarization and inflammatory response of microglia through autophagy activation. It also provides a theoretical basis for understanding the neurotoxicity of AgNPs and guiding their rational use.

Keywords: AgNPs, Microglia, Autophagy, Polarization, Inflammation

References:
PART IV: ABSTRACTS OF THE ORAL SESSION’S PRESENTATION

Oral Session 7: Occupational, Clinical or Regulatory Toxicology

Kindly scroll/flip next few pages to view the selected abstract
FACILITATING ACCESS TO EDUCATIONAL RESOURCES FOR TRAINING IN NONANIMAL METHODS IN DEVELOPING COUNTRIES

ESTHER HAUGABROOKS1*, KRISTIE SULLIVAN1

1PHYSICIANS COMMITTEE FOR RESPONSIBLE MEDICINE (PCRM)

*ehaugabrooks@pcrm.org

ABSTRACT

Introduction:
The use of new approach methodologies (NAMs), or nonanimal methods, for chemical safety testing has increased exponentially. Yet with different regional legislation and safety requirements, challenges arise concerning implementing NAMs in a global market, including access to training and educational opportunities for the use of NAMs especially in non-OECD countries.

Objective:
This presentation will highlight open resources and training opportunities related to the use of advanced in vitro and in silico toxicological methods to facilitate improved international implementation.

Methods:
This presentation will highlight open-source materials and resources for the advancement of the OECD test guidelines program and the implementation of regulatory safety testing strategies using nonanimal approaches. In addition, we share approaches and programs that we use to maximize international participation, in part by offering free virtual training and open-access portals containing expert presentations and collated educational resources to improve uptake of NAMs.

Results and Discussion:
There is a growing body of evidence-based advocates, in which PCRM is a part, that is interested in advancing scientifically robust nonanimal approaches through outreach and educational opportunities. Through the International Council on Animal Protection in OECD Programmes (ICAPO), PCRM encourages broad adoption of nonanimal test guidelines (TG) for safety testing – currently, there are 26. With 36 OECD member countries, only four of which are developing countries, it is pivotal to encourage countries to submit proposals to expand available replacement approaches and to submit case studies detailing regulatory uses of NAMs. PCRM does this through our NAMs Use for Regulatory Application (NURA) program, which trains regulatory scientists and industry personnel on nonanimal approaches. We also focus on collaboration and training for early-career end users. The first North American Summer School (McCarthy et al., 2020) generated participation from over 20 countries, with active participation from many students outside of North America, including India, Brazil, Ukraine, Nigeria, and Uganda.

Keywords: Education, OECD, nonanimal, safety assessment, regulatory acceptance

References:
CHALLENGES OF GHS IMPLEMENTATION WORLDWIDE

GOH COO TA*

INSTITUTE FOR ENVIRONMENT AND DEVELOPMENT (LESTARI)
UNIVERSITI KEBANGSAAN MALAYSIA (UKM)
43600, SELANGOR, MALAYSIA

*gohchoota@ukm.edu.my

ABSTRACT

Introduction:
The Globally Harmonized System of Classification and Labelling of Chemicals (GHS) was established in 2003 and many countries are implementing GHS in their respective countries. However, there are challenges that impede GHS implementation worldwide.

Objective:
The objective of this presentation is to identify and discuss challenges of GHS implementation that could affect global chemical hazard communication.

Methods:
The method adopted in this study is based on desktop review.

Results and Discussion:
The challenges that impede GHS implementation worldwide include adoption of different versions of the GHS document; adoption of different building blocks, absence of global list of classified chemicals; different chemical mixture classification throughout the supply chain; and absence of the definition for GHS implementation.

Keywords: GHS, chemical safety, hazard communication

References:
MICROPLASTIC EXPOSURE, POSSIBLE HEALTH IMPACT AND POLICY MEASURES

AHMAD FAIZAL ABDULL RAZIS1,2* AND USMAN SUNUSI2

1NATURAL MEDICINES AND PRODUCTS RESEARCH LABORATORY, INSTITUTE OF BIOSCIENCE, UNIVERSITI PUTRA MALAYSIA, SELANGOR, MALAYSIA, 2DEPARTMENT OF FOOD SCIENCE, FACULTY OF FOOD SCIENCE AND TECHNOLOGY, UNIVERSITI PUTRA MALAYSIA, SELANGOR, MALAYSIA

*madfaizal@upm.edu.my

ABSTRACT

Introduction:
Plastics production has increased globally due to their versatility and low production cost. Coastal countries generate about 275 million metric tons (MT) of plastics, of which 4.8 to 12.7 million MT enters the ocean. As of 2019, plastic production stands at 368 million MT, the figure is expected to double in 20 years to come. These plastics enter into the ocean as waste discharge or accidental spill. Microplastics (MPs) are plastic of size less than 5µm synthesized primarily in micro size or secondary due to breakage of larger plastics, they are mostly polymers synthesized from polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET) and polyesters.

Objective:
This paper reviews the burden of MPs pollution and control measures in place by exploring information within the last 22 years from scientific and general databases.

Methods:
Literature review

Results and Discussion:
MPs are found in food, water, beverages and salts in the supermarkets readily available for human consumption. Animal studies showed varying effects of MPs, with human health impact unknown, thus making them a threat to humans and natural ecosystem. MPs have been recognised by UN under SDG 14, to be measured by index of floating plastic debris density as an indicator, which until now have no internationally acceptable index. The review finds countries with regulations on MPs, such as the USA and China, are poorly implemented especially in rural settings and products containing micro beads are still in use. Weakened institutions, non-uniform policies, international trade, increased plastic production, poor plastic waste management, resistance from plastic industries, poor consumer education and apparent lack of studies on impacts of MPs on the environment and human have been a major setback for combating MPs pollution. Prompt global awareness and readiness, collaboration between scientists, plastic industries, governments, NGOs and community members, global evidence-based acceptable and measurable policies by all countries, plastic alternatives, studies on human health impact, regulations on plastic containing foods, consumer education, and regulation of plastic at level of production, pollution source, remediation and clean-up are clearly needed for a holistic fight against MPs pollution and intending consequences on humans and the environment.

Keywords: Microplastics, marine pollution, UN SDG, UNEP,

References:
SAFETY PHARMACOLOGY TEST OF PLANT-BASED COVID-19 VACCINE IN NON-HUMAN PRIMATES

SUCHINDA MALAILIVIJITNOND1,2*, TARATORN KEMTHONG1, PIYACHADA ROUNMAKOK1, NUTCHANAT SUTTISAN1, KRITTIKA SAPKANARAK1 AND WARANYOO PHOOLCHAROEN3,4

1NATIONAL PRIMATE RESEARCH CENTER OF THAILAND, CHULALONGKORN UNIVERSITY, SARABURI, THAILAND, 2DEPARTMENT OF BIOLOGY, FACULTY OF SCIENCE, CHULALONGKORN UNIVERSITY, BANGKOK, 3BAIYA PHYTOPHARM CO., LTD, BANGKOK

*Suchinda.m@chula.ac.th

ABSTRACT

Introduction:
After the COVID-19 was first identified in Wuhan, China in December 2019, Thailand is the first country that made the confirmation of the case outside China. Henceforth, Baiya Phytopharm Co., Ltd, a Thai biotechnology company, has developed a plant-produced subunit COVID-19 vaccine (namely BY301) and mixed with the excipient aiming to stabilize the vaccine at the storage temperature of 2-8 °C.

Objective:
In reference to the ICH S7A Safety Pharmacology Studies for Human Pharmaceuticals, this study identifies potential undesirable pharmacodynamic properties of the excipient and BY301 relevant to human safety.

Methods:
The safety pharmacology on the physiological functions of three vital organ systems, covering Central Nervous System (CNS), Cardiovascular System (CVS) and Respiratory System (RS) was assessed. Ten juvenile/sub-adult female cynomolgus monkeys, aged 3 to 5 years, body weight between 2.4 to 3.1 kg were divided into 2 groups (n = 5 for each group) and intramuscularly injected with excipient alone or 10 µg of BY301 for 2 times on Day-0 and Day-21. The animals were followed up for 35 days after the first injection.

Results and Discussion:
The overall results of the monkey health based on body weight changes, blood biochemistry (ALT, AST, TP, BUN, ALB, ALP, TBIL, CHOL, GLU, TRIG, UA, GLOBU and CREA-P levels), hematology (RBC, WBC, HGB, HCT, PLT, PCT, NRBC, LYMPH, MONO, EO, BASO, NEUT and MPV), and the specific endpoints for the CNS (motor activity, behavioral changes, coordination, sensory/motor reflex responses and body temperature), CVS (blood pressure, heart rate, and electrocardiogram) and RS (respiratory rate, hemoglobin oxygen saturation and lung sound) did not suggest abnormal signs being induced by the excipient and the BY301. The monkey body weight was increased by 1.38% for excipient group and 1.66% for BY301 group, and body core temperature was ranging by 36.2 - 38.9 °C. Overall, it can conclude that two times of intramuscular administration of the excipient and BY301 are unlikely to cause adverse effects to the physiological functions of three vital organ systems, which is reflected with relevance to safety in healthy pubertal humans consistent with the scope of the ICH Topic S7A guidance document.

Keywords: COVID-19, safety pharmacology, Baiya SARS-CoV-2 Vax 1, cynomolgus monkey, ICH S7A

Reference:
PART V: SPONSORS ADVERTISEMENT

IPIECA

PETRONAS

AMERICAN COLLEGE OF TOXICOLOGY

CROPLIFE ASIA

CHINESE SOCIETY OF TOXICOLOGY

Kindly click the hyperlink/ scroll/ flip next few pages to view the advertisement
IPIECA
www.ipieca.org

2021–2024 strategy and vision
Bringing together environmental and social performance with the energy transition and sustainable development

43 partnerships and collaborations with global organizations to enhance IPIECA’s work

Represented IPIECA members at 28 external events including 8 global UN conferences

35 webinars with 70 external speakers 3,225 attendees from 985 companies

Launched 5th edition of the IPIECA-API-IOGP Sustainability reporting guidance

25,000 downloads of IPIECA publications

34 new IPIECA publications including 8 translations

13 IPIECA groups across climate, nature, people and sustainability

convening 1,000+ industry experts

10 new members totalling 43 companies and 29 associations

Contacts
IPIECA
14th Floor, City Tower
40 Basinghall Street
London, EC2V 5DE
United Kingdom
Telephone: +44 (020) 7633 2388; Fax: +44 (020) 7633 2389
PETRONAS' four lenses of Sustainability

Continued Value Creation
PETRONAS aims to drive long-term business value creation through responsible investments.

Safeguard the Environment
PETRONAS strives to collaboratively reduce environmental impact by transitioning to lower carbon energy solutions and deploying innovative operations and technologies.

Positive Social Impact
PETRONAS aims to create positive alliances with the communities where the company operates by protecting and adding value to the well-being of employees, partners and the society.

Responsible Governance
PETRONAS aims to safeguard the organisation's commitments by upholding strong governance mechanisms and ethical business practices.

#sustainablevalueforall
Find out more at www.petronas.com/sustainability

Contacts

PETROLIAM NASIONAL BERHAD (PETRONAS)
Level 13, Tower 1,
PETRONAS Twin Towers,
Kuala Lumpur City Centre,
50088 Kuala Lumpur.

Email: ghsse@petronas.com.my
CropLife Asia is a non-profit organization dedicated to promoting plant science. Our mission is to empower the region’s farmers to produce safe, affordable, and nutritious food while promoting food safety best practices across the food value chain.

A safe and secure food supply chain is crucial in supporting the world’s economy and trade as it contributes to food and nutritional security which underpins sustainable development. With the world’s population expected to grow to nearly 10 billion in 2050, the increased demand for food will create both opportunities and challenges for food safety. Challenges such as climate change will put greater stress on our farmers, food producers and handlers to ensure food safety from farm-to-fork. Thankfully, the innovative technologies of plant science can help farmers produce safe and nutritious food with overall less impact on the environment.

Biotech crops have been developed with improved traits such as increased yield, better resistance to pests and/or improved nutrition, among others. Crop protection products (or pesticides) allow farmers to grow more food on less land and raise productivity per hectare. Without pesticides, 40% of global rice and maize harvests could be lost every year and losses for fruits and vegetables could be as high as 50-90%. These plant science technologies are crucial tools that help farmers address global challenges such as food insecurity, food safety and climate change.

Contacts
CropLife Asia
20 Malacca Street, Malacca Centre
#06-00 Singapore 048979
Tel: +65 6221 1615
Dr. Sianghee Tan
sianghee.tan@croplifeasia.org
CHINESE SOCIETY OF TOXICOLOGY
http://www.chntox.org/en/

CHINESE SOCIETY OF TOXICOLOGY (CST) is a national professional and scholarly non-profit organization in China. The CST is affiliated to China Association for Science and Technology, and a member of IUOTOX and ASIATOX. CST comprises more than 17,000 individual members & 180 organizational members from universities, academic institutions, government and industries, etc., in China, and counts about 100 individual members from around the world. The CST is governed by a Council with 150 council members led by its Standing Committee. Prof. Jia Zhou serves as the present President and Prof. Chao Lu serves as Secretary General.

CST holds ~20 domestic conferences, symposia and meetings, continuing education courses annually, also a series of international conferences & symposia that cover a broad range of topics in toxicology sciences. The CST National Congress is held every two years with 1500 to 1800 participants each time. The CST Youth Forum of Science and Technology gathers young scientists and professionals in toxicology and cross-disciplines from all over the country every other year.

CST has established 4 kinds of science and technology awards, including Outstanding Contribution Awards and Youth Scientist Awards. The CST publishes its official journal Toxicology Research in parity with British Toxicology Society and Oxford University Press (OUP), also the Chinese Journal of Pharmacology and Toxicology in collaboration with Chinese Society of Pharmacology.

CST organizes qualification examination and issues Certifying Diplomat of CST Certified Toxicologist every year. Up to now, a total of 406 Toxicologists have been certified.

Upcoming Congresses and Events:
The 9th International Congress of Asian Society of Toxicology (ASATOX-IX), October 20-23, 2021, in Hangzhou, China
Congress Website: http://www.asatox2020.com/en
Email: asatox2020@chntox.org

The XVIII International Congress of Toxicology (ICT-2025), October 2025, in Beijing, China

Contacts
CST office: No. 10C11, Chang Yin Tower,
88 Yong Ding Road, Hai Dian District,
Beijing 100038
P.R. China

CST Secretariat: cst@chntox.org; cstmeeting@chntox.org
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(a) Occupational, Clinical or Regulatory Toxicology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GRIEVOUS COCKTAIL: A CASE OF COMBINED DRUG INTOXICATION</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Praveene Thachanamaurthy and Desmond Samuel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANALYSIS OF CANNABIS AND ITS METABOLITES 11-OH-THC and THC-COOH, IN</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>POST-MORTEM FLUID AND TISSUES BY LC-MS/MS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Latifa Al-Qumsani et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MULTI-LEVEL ANALYSIS OF RADIATION EFFECTS ON BONE MICROARCHITECTURE:</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>A SYSTEMIC REVIEW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ayuni Amalina Abu Bakar et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RECEPTOR TYROSINE KINASES: A SUITABLE TARGET IN THE MANAGEMENT OF</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>DRUG-INDUCED AND DIET-INDUCED STEATOSIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bhave Sayali Shrivardhan et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DISTURBANCE OF ANTIOXIDANT CAPACITY INDUCED BY OCCUPATIONAL</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>EXPOSURE TO HERBICIDES IN THAI FARMERS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supakit Khacha-Ananda et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EFFECT OF PERSONAL HYGIENE ON HEALTH STATUS OF GARBAGE</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>SCAVENGERS IN GENUK SEMARANG, INDONESIA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suparmi Suparmi et al.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>(b) Ecotoxicology or Environmental Toxicology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SSRI GROUP OF ANTIDEPRESSANTS AND ITS POTENTIAL TOXICITY FOR SOIL</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>ORGANISMS: A BRIEF REVIEW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marcela R. M. and Marta Siviero G. P.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGCG AMELIORATES ALUMINUM MALTOLE INDUCED NMDAR EXPRESSION CHANGES</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>OF SH-SY5Y CELL LINE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saziye Sezin Palabiyik-Yucelik et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOXICITY ASSESSMENT OF EMAMECTIN BENZOATE AND ITS FORMULATIONS</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Ameena Mobeen et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRIGONELLINE PREVENTED ULTRVIOLET-B RADIATION EXPOSURE</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>CULMINATES IN PHOTODAMAGE IN SKIN VIA MODULATION OF ERSTRESS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AUTOPHAGY SIGNALLING AXIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lone Nazir Ahmad et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOXICITY ASSESSMENT IMIDAZOLIUM-BASED IONIC LIQUIDS FAMILY BY USING</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>MICROTOX® M500 ANALYZER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Muhammad Ishaq Khan et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>THE ROLE OF NRF2 ON THE CELL APOPTOSIS IN ARSENIC-INDUCED</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>MALIGNANT TRANSFORMATION IN HACAT CELLS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qianlei Yang et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ESTRADIOL AND BISPHENOL A ESTROGENIC EFFECTS ON THE Rotifer</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>BRACHIONUS NEVADA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silvana Rojas et al.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>(c) Food, Herbal or Natural Product Toxicology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SINGLE ORAL DOSE TOXICITY STUDY OF ARECA CATECHU AND</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>CYMBOPOGON NARDUS AQUEOUS EXTRACTS IN RATS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suganthi J et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEXANE EXTRACT OF GARLIC SUPPRESSES METHYLMERCURY-</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>MEDIATED TOXICITY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yumi Abiko et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACUTE ORAL TOXICITY STUDY OF ACALYPHA INDICA AND EUPHORBIA</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>HIRTA IN SPRAGUE DAWLEY RATS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elda Nurafnie I.R. et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OXIDATIVE STRESS AND DNA DAMAGE EFFECT OF DIOSCOREA HISPIDA</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>DENNST ON PLACENTAL TISSUES OF RATS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hussin M. et al.</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Author(s)</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>(c) Food, Herbal or Natural Product Toxicology</td>
<td>EVALUATION OF SWietenia Macrophylla TOXICITY USING CELL-BASED ASSAY</td>
<td>Mary Khoo Gaik Hong et al.</td>
</tr>
<tr>
<td></td>
<td>NEUROTOXIC EFFECT OF MALAYSIAN COBRA VENOMS AND NEUTRALIZATION BY THAI’S ANTIVENOMS</td>
<td>Nor Asyikin Zukifli et al.</td>
</tr>
<tr>
<td></td>
<td>HISTOLOGICAL EFFECT OF ORAL GENTAMICIN-NIGELLA SATIVA EMULSION TREATMENT IN RABBIT OSTEOMYELITIS MODEL</td>
<td>Muhammad Hamzah Ahmad Halmi et al.</td>
</tr>
<tr>
<td></td>
<td>TOXICITY PROFILE OF THE AERIAL METHANOL EXTRACT OF Alysicarpus Glumaceus Vahl DC (Leguminosae) IN DROSOPHILA MELANOCASTER</td>
<td>Ferhat Khan et al.</td>
</tr>
<tr>
<td></td>
<td>ASSESSMENT OF CURCUMIN PIPERIDONE DERIVATIVES-INDUCED ANTI-PROLIFERATION ON HUMAN GLIOBLASTOMA LN-18 CELLS</td>
<td>Nur Syahirah Che Razali et al.</td>
</tr>
<tr>
<td></td>
<td>UNDERSTANDING THE REPRODUCTIVE TOXICITY OF PHYTOESTROGENS: A SYSTEMATIC REVIEW</td>
<td>Nur Nadhirah Suhaimi et al.</td>
</tr>
<tr>
<td>(d) Computational Toxicology</td>
<td>COMPUTATIONAL PREDICTION OF PULMONARY PERMEABILITY OF CHEMICALS</td>
<td>Hui-Lun Lin et al.</td>
</tr>
<tr>
<td></td>
<td>TOXICOGENOMIC ANALYSIS OF BERBERINE’S PROTECTIVE ROLE IN TOXIC METALS INDUCED ALZHEIMER’S DISEASE</td>
<td>Katarina Živančević et al.</td>
</tr>
<tr>
<td>(e) Mechanistic Toxicology</td>
<td>SUPEROXIDE DISMUTASE ACTIVITY IN THE BLOOD OF WISTAR RATS AFTER SUBACUTE EXPOSURE TO LOW LEVELS OF LEAD</td>
<td>Draganja Javorac et al.</td>
</tr>
<tr>
<td></td>
<td>ANTITUMOR ACTIVITIES OF PHENYLTIN(IV) DITHIOCARBAMATE COMPOUNDS IN HUMAN ERYTHROLEUKAEMIA CELL LINE KS62</td>
<td>Sharifah Nadhira Syed Annuar et al.</td>
</tr>
<tr>
<td>(f) Risk Assessment & Others</td>
<td>CARCINOGENIC AND ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN EGGS AND SOILS NEAR A GOLD MINE IN THAILAND</td>
<td>Paweena Aendo et al.</td>
</tr>
<tr>
<td></td>
<td>UPTAKE OF CARBOXYL-POLYETHYLENE GLYCOL-FUNCTIONALISED GOLD NANOPARTICLES INTO SPHEROIDS</td>
<td>Seth-Frericish Fabian et al.</td>
</tr>
<tr>
<td></td>
<td>15 YEARS OF THE IBEROAMERICAN NETWORK OF TOXICOLOGY AND CHEMICAL SAFETY</td>
<td>Rita Gutierrez et al.</td>
</tr>
</tbody>
</table>
PART VI: ABSTRACTS OF THE POSTER PRESENTATIONS

(a) Occupational, Clinical or Regulatory Toxicology

Kindly scroll/flip next few pages to view the selected abstract
GRIEVOUS COCKTAIL: A CASE OF COMBINED DRUG INTOXICATION

PRAVEENE THACHANAMAURTHY¹, DESMOND SAMUEL¹

¹DEPARTMENT OF GENERAL MEDICINE, MIRI GENERAL HOSPITAL, SARAWAK, MALAYSIA

viniemurthy@yahoo.com

ABSTRACT

Introduction:
Since the establishment of the Poison Centre in Malaysia, more than 35000 cases have been reported with case fatality rate of 35.88/1000. Albeit poisonings being not uncommon, it could be challenging to manage a case of multiple drug overdose due to the different toxidromes and interactions.

Objective:
We report a case of combined drug intoxication managed using various modalities in a rural setting in Malaysia.

Methods:
We examine the diagnostic challenges (e.g., inability to measure plasma levels of fluoxetine) and the limited treatment options available in our setting to manage a case of combined drug intoxication.

Results and Discussion:
An 18 year old man with autism spectrum disorder was brought in by his father after he was found unconscious with empty packets of 200 tablets of 200 mg sodium valproate, 15 tablets of 20 mg fluoxetine and 16 tablets of 500 mg paracetamol. He then developed multiple episodes of seizures. Examination revealed depressed conscious level, hypopnea, rigidity and hyperreflexia with ECG showing prolonged QT interval; leading to intubation. Blood analysis revealed respiratory acidosis, deranged liver function test and high plasma levels of paracetamol and sodium valproate. After intravenous N-acetylcysteine and hemodialysis, the persistently high plasma levels of sodium valproate and hemodynamic instability necessitated continuous veno-venous hemodiafiltration after the initial dialysis. After a prolonged hospital stay due to ventilator associated infection, patient was discharged well. This case illustrates the challenges in management of multiple drug overdoses with overlapping toxidromes in a rural setting. Prompt recognition and management of this condition is needed to prevent significant morbidity and mortality.

Keywords: paracetamol, sodium valproate, fluoxamine, combined drug intoxication

References:
ANALYSIS OF CANNABIS AND ITS METABOLITES 11-OH-THC and THC-COOH, IN POST-MORTEM FLUID AND TISSUES BY LC-MS/MS

LATIFA AL-QUMSANI¹, TORKI AL-ZUGHAIBI¹,², AHMED MIRZA¹

COLLEGE OF APPLIED MEDICAL SCIENCE AND DEPARTMENT OF MEDICAL LABORATORY TECHNOLOGIEST, KING ABDULAZIZ UNIVERSITY¹, KING FAHD MEDICAL RESEARCH CENTER², SAUDI ARABIA, JEDDAH CITY.

Latifa.alqumsani@gmail.com

ABSTRACT

Introduction:
Cannabis sativa is one of three widely recognized plant species of cannabis. The prevalence of illicit use of cannabis has brought a special interest in analyzing major cannabinoids and their metabolites in biological samples. LC-MS/MS has proven to be a reliable approach for analyzing the presence of tetrahydrocannabinol (THC), 11-hydroxy-THC (11-OH-THC) and carboxy-THC (THC-COOH) in post-mortem investigations.

Objective:
Study the concentration and distribution of THC, 11-OH-THC and THC-COOH in various post-mortem fluid and tissue samples using LC-MS/MS.

Methods:
43 post-mortem cases containing different fluid and tissue samples previously screened and found to be positive for cannabinoids were extracted using Solid Phase Extraction (SPE) and analyzed for THC and its metabolites by LC-MS/MS for THC. Samples were pre-treated with alkaline hydrolysis prior to SPE. (JPCC; ethical approval no. H-02-J-002, Ministry of Health, Jeddah Health Affairs).

Results and Discussion:
This study showed that THC or one of its metabolites were detected in different concentrations in various tissues and fluids for all 43 cases. Thus, it’s difficult to quantitate or interpret the role of THC in the cause of death because of the variation in concentration in the various specimens. THC-COOH was detected in most types of specimens and, it can be the best indicator to detect cannabinoid in toxicology analysis. No single body fluid or tissue can be considered ideal for the detection of THC or its metabolites during toxicology analysis. Inclusion of several specimens in post-mortem analysis can help enhance the quality of cannabinoids investigation.

Keywords: Cannabis analysis, THC, post-mortem, LC-MS/MS

References:
MULTI-LEVEL ANALYSIS OF RADIATION EFFECTS ON BONE MICROARCHITECTURE: A SYSTEMIC REVIEW

AYUNI AMALINA ABU BAKAR1, NOOR SHAFINI MOHAMAD1*, MOHD HAFIZI MAHMUD1, HAIRIL RASHMIZAL ABDUL RAZAK2

1CENTRE FOR MEDICAL IMAGING STUDIES, FACULTY OF HEALTH SCIENCES, UNIVERSITI TEKNOLOGI MARA SELANGOR, PUNCAK ALAM, SELANGOR, MALAYSIA., 2DEPARTMENT OF RADIOLOGY, FACULTY OF MEDICINE AND HEALTH SCIENCES, UNIVERSITI PUTRA MALAYSIA, SERDANG, SELANGOR

*shafini.mohamad@uitm.edu.my

ABSTRACT

Introduction:
Modern radiation therapy has become an effective method to treat and monitor tumour growth in cancer patients. It has proved to be a successful way to minimize mortality rates. However, the adverse effects of radiation have been historical evidence in the clinical environment involving diminishing the quality and density of bone and causing fragility fracture to the bone in the long run.

Objective:
To review the existing literatures on the effect of irradiation on morphology, mechanical and tissue properties of murine model bone.

Methods:
Guided by PRISMA Statement (Preffered Reporting Items for Systemic reviews and Meta –Analyses) review method, a systemic review of the Scopus, Web of Science and Science Direct databases identified 1416 related studies. Following the screening, eligibility and quality appraisal process, 6 articles were eligible for review.

Results and Discussion:
This review revealed an association between bone destruction and the magnitude of time and dose post-irradiation. The effect of radiation on the microstructure of the femur, primarily at a later time was noticeable at low (1 Gy) and high radiation dose (30 Gy) in non-osteoporotic mice. The trabecular bone volume fraction trabecular number and trabecular thickness were significantly reduced. The mechanical strength was significantly impacted in both shorter and longer periods. The bone deterioration has been confirmed to manifest at irradiation and contralateral sites, showing that irradiation's local and systemic impact negatively affects the bone. It was also observed changes in osteoclast and osteoblast activities, therefore might increase the severity of inflammatory response. The mechanism may be partly associated with bone toxicity which correspond to an early post-radiation reaction. Bone toxicity is a predictive factor that correlates to bone fractures and subcutaneous tissue alteration.

Keywords: radiation effects, bone morphology, bone mechanical stength, bone tissue properties

References:
ABSTRACT

Introduction:
Drug-induced steatosis is one of the major toxicological challenges associated with the usage of various drugs such as valproic acid, amiodarone, methotrexate (Rabinowich & Shibolet, 2015). High fat diet is another cause of steatosis and is also known to exacerbate drug-induced steatosis (Zhang et al., 2014). Thus, it is imperative to identify a suitable target to manage steatosis.

Objective:
In our study we sought to understand the role of receptor tyrosine kinases (RTKs) in the development and pathogenesis of drug-induced and diet-induced steatosis.

Methods:
In-vitro model for drug-induced steatosis was developed using HepG2 cells treated with valproic acid. For diet-induced steatosis model, HepG2 cells were treated with free fatty acids such as palmitic acid and oleic acid. RTK inhibitors for epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR) and fibroblast growth factor receptor (FGFR) were used to study its effect on lipid accumulation in drug-induced and diet-induced steatosis model.

Results and Discussion:
Amongst three RTK inhibitors tested namely, Gefitinib (EGFR inhibitor), Sunitinib (VEGFR inhibitor) and BLU9931 (FGFR4 inhibitor), Gefitinib was found to reduce lipid accumulation by approximately 20% in both drug-induced and diet-induced steatosis without compromising cell viability. The effect of EGFR inhibition on lipid accumulation was confirmed using another EGFR inhibitor, Erlotinib and EGFR Si RNA in diet-induced steatosis model. EGFR is known to regulate sterol regulatory element binding protein (SREBP) which controls genes involved in de-novo lipogenesis (Komposch & Sibilia, 2015; Pang et al., 2020). Thus, inhibiting EGFR may block SREBP and de-novo liogenesis and reduce lipid load. Further, EGFR inhibition was also found to induce autophagy in both the models. As autophagy is the mechanism by which excess and unwanted cellular components are removed, we are interested in understanding if autophagy plays any role in lowering lipid accumulation in drug-induced and diet-induced steatosis model (Singh & Cuervo, 2012).

Keywords: Steatosis, EGFR, Gefitinib, Autophagy, SREBP

References:
Pang, B., Zhang, J., Yuan, J. et al. (2020). Inhibition of lipogenesis and induction of apoptosis by valproic acid in prostate cancer cells via the C/EBPα/SREBP-1 pathway. 1–25. https://doi.org/10.21203/rs.2.20628/v1
DISRUPTION OF ANTIOXIDANT CAPACITY INDUCED BY OCCUPATIONAL EXPOSURE TO HERBICIDES IN THAI FARMERS

SUPAKIT KHACHA-ANANDA1*, UNCHISA INTAYOUNG1, KANYAPAK KOHSUWAN1, KLINTEAN WUNNAPUK1, RATANA SAPBAMRER2

1DEPARTMENT OF FORENSIC MEDICINE, FACULTY OF MEDICINE, CHIANG MAI UNIVERSITY, THAILAND
2DEPARTMENT OF COMMUNITY MEDICINE, FACULTY OF MEDICINE, CHIANG MAI UNIVERSITY, THAILAND

*supakit.kh@cmu.ac.th

ABSTRACT

Introduction: Occupational exposure to herbicides has been seriously reported to induce acute and chronic diseases. The adverse health effects after herbicide exposure were based on an induction of free radical. The imbalance between free radical and antioxidant defense system is an important role to induce deleterious health effects.

Objective: The aim of this study is to determine the urinary oxidative status in Thai farmers using single or mixture of herbicides during agricultural activities.

Methods: Ethical approval for this study was granted by the Research Ethics Committee, Faculty of Medicine, Chiang Mai University. Subjects were recruited for face-to-face interview. Two spot urines (pre- and post-working) were collected for determination of malondialdehyde (MDA) and total antioxidant capacity (TAC). All data were compared between two groups according to type of herbicide application (single and combined herbicide use).

Results and Discussion: Most subjects were male farmers (64.18%) with duration of agricultural activities ranging from 20 – 40 years. Fifty-eight percent of the subjects mostly applied the combined herbicides between glyphosate, paraquat, and 2,4-D. The cumulative exposure intensity index (EII) was estimated and showed a greater value in farmers using single herbicide than combined herbicide use. The level of urinary MDA in workers using combined herbicides was slightly increased compared to those of workers using single herbicide. However, it was not found a significant difference in urinary MDA level between single and combined herbicide application. The urinary TAC in workers using single herbicide was significantly increased compared to those of workers using combined herbicides. Our result implied that the exposure to herbicides during agricultural activities posed a potential risk to induce alteration of antioxidant status.

Keywords: herbicide, Thai farmers, malondialdehyde, total antioxidant capacity

References:

EFFEKT OF PERSONAL HYGIENE ON HEALTH STATUS OF GARBAGE SCAVENGERS IN GENUK SEMARANG, INDONESIA

SUPARMI SUPARMI1*, DIAN APRILIANA RAHMAWATIE2, SITI THOMAS ZULAIKHAH3

1DEPARTMENT OF BIOLOGY, FACULTY OF MEDICINE UNIVERSITAS ISLAM SULTAN AGUNG (FK UNISSULA), INDONESIA, 2 DEPARTMENT OF BIOCHEMISTRY, FK UNISSULA, INDONESIA 3DEPARTMENT OF PUBLIC HEALTH, FK UNISSULA, INDONESIA

*suparmi@unissula.ac.id

ABSTRACT

Introduction:
Health status of garbage scavengers or pemulung is often neglected due to the lack of knowledge and awareness on personal hygiene during collecting garbage. Amarin et al. (2020) reported that most of the garbage scavengers failed to maintain clean skin, healthy habits must be considered, such as maintaining clean clothes, bathing regularly, bathing using clean water and soap.

Objective:
This study was conducted to analyze the effect of personal hygiene and the use of personal protective equipment with the occurrence of diseases at garbage scavengers in Genuk, Semarang.

Methods:
A descriptive cross-sectional study was conducted to observe personal hygiene and health status of 36 garbage scavengers in Genuk, Semarang, Indonesia. The respondents were selected by purposive sampling. Personal hygiene data and the use of personal equipment were obtained through direct observation and observation questionnaires. Physical examinations by two general practitioners were done to observe the health status. Human ethics was approved by Bioethic Unit of FK UNISULA.

Results and Discussion:
Personal hygiene among the scavengers was poor. Most of the respondents did not use personal protective equipment, including gloves, mask, boots and hats during garbage collection. Low awareness to wear protective equipment caused 99.4% of the scavengers contact with disease vector and 52.8% respondents exposed to the nasty smell during collecting garbage. Physical examinations revealed 15 common diseases, in which hypertension was the predominant disease in respondents. Chi-square test showed that the disease suffered by scavengers was not associated with personal hygiene. It is concluded that health status of scavengers in Genuk, Semarang should be monitored.

Keywords: Scavenger, protective equipment, working environment, personal hygiene, health status

References:
(b) Ecotoxicology or Environmental Toxicology

Kindly scroll/flip next few pages to view the selected abstract
ABSTRACT

Introduction:
Pharmaceuticals are not entirely assimilated by the human body, entailing a potential accumulation in sewage sludge (SS). Consequently, the selective serotonin reuptake inhibitors (SSRI) have been reported in measurable concentrations both in SS and the environment, bringing the attention to the effects posed by this group of antidepressants towards non-target soil organisms.

Objective:
The main purpose of this work is to present a review of the range concentrations of most prescribed SSRI found on SS worldwide and describe their effects on soil fauna reported so far.

Methods:
This work’s methodology consisted in a critical literature review, focusing on SSRI quantification on SS in different countries, and ecotoxicological tests performed with soil organisms. The most prescribed SSRI considered for this project were Sertraline (SER), Citalopram (CIT) and Fluoxetine (FLX).

Results and Discussion:
Collected data comprised three continents (North and South America, and Europe). The highest concentration found was for SER, in Brazil, with a range of 0.16 to 1.40 mg kg\(^{-1}\) DM (dry matter). Second highest was CIT, also in Brazil, ranging from 0.04 to 1.18 mg kg\(^{-1}\) DM. FLX followed, with highest concentrations found in the USA, ranging from 0.09 to 1.10 mg kg\(^{-1}\) DM. Reported effects on soil organisms include SER and CIT accumulation on leaves and roots of *Spinacea oleracea* L and SER accumulation on leaves and roots of *Lepidium sativum*. For FLX, biochemical changes and enzymatic inhibition were reported for *Folsomia candida* in acute tests, whilst chronic tests showed that toxicity for reproduction increased as following generations were exposed. CIT was also reported to cause inhibitory effect on soil microbial community. Thus, the increasing accumulation of SSRI in the environment, its potential toxicity for soil organisms, and the data gap on the subject, reveal the importance of projects like this for general awareness.

Keywords: pharmaceuticals in sewage sludge, soil ecotoxicity, sertraline, citalopram, fluoxetine

References:
EGCG AMELIORATES ALUMINUM MALTOLATE INDUCED NMDAR EXPRESSION CHANGES OF SH-SY5Y CELL LINE

SAZIYE SEZIN PALABIYIK-YUCELIK1,2*, EROL AKPINAR3, ZEKAI HALICI2,3

1ATATURK UNIVERSITY, FACULTY OF PHARMACY, DEP. OF PHARMACEUTICAL TOXICOLOGY, 2CLINICAL RESEARCH, DEVELOPMENT AND DESIGN APPLICATION AND RESEARCH CENTER, ATATURK UNIVERSITY, 3ATATURK UNIVERSITY, FACULTY OF MEDICINE, DEP. OF PHARMACOLOGY, TURKEY

*spalabiyik@atauni.edu.tr

ABSTRACT

Introduction:
Aluminum (Al) is a heavy metal accumulates highly in hippocampus, which is also affected in neurodegenerative disorders like Alzheimer’s disease (AD) (1). Al neurotoxicity affects different cellular signaling pathways related to neurodegenerative processes especially N-methyl-D-aspartate receptors (NMDAR) (2,3) and treatment strategies are tried to be developed through this pathway (4).

Objective:
To investigate the effect of aluminum maltolate (Al(Malt)3) on NMDAR 1/2A/2B expressions in vitro SH-SY5Y cell line and the protective role of epigallocatechin gallate (EGCG).

Methods:
SH-SY5Y cells were grown in favorable cell conditions. Cell proliferation was measured with the xCelligence system. Cells were plated for RNA extraction in 6-well plates, 5x10^6 cells per well. Cells were exposed to 10 µM and 25 µM EGCG; and 50 µM Desferoxamine (DES) as a positive control on ehour before 200 µM Al(Malt)3. After 24 h mRNA expression levels were assessed with real time PCR.

Results and Discussion:
SH-SY5Y (neuroblastoma) cells treated with Al(Malt)3 for 24 and 48 hours at increasing doses showed a significant decrease in viability at 200 µM and over doses for 24 hours and 100 µM and over doses for 48 hours (both, p<0.001). Al(Malt)3 significantly decreased NMDAR1/2B subunits mRNA expression levels. While both doses of EGCG treatment upregulated mRNA expression levels NMDAR 1 and 2B, only the 10 µM EGCG treatment significantly increased NMDAR 2B levels. NMDAR2A mRNA expression levels did not change with the administration of Al(Malt)3 or EGCG. Studies have shown that Al can induce neurotoxicity by inhibiting NMDAR protein expressions (3) and it has been shown that Al can affect the Ca+2 signal system, and neurotoxic effects can be observed on NMDAR (5). In the SH-SY5Y cells that received EGCG, the increase in NMDARs responsible for synaptic pilasticity, suggested that EGCG can be effective in neuron recovery. This work was supported by TUBITAK (project number 115S533).

Keywords: Aluminum, epigallocatechin gallate, neurotoxicity, N-methyl-D-aspartate receptor

References:

TOXICITY ASSESSMENT OF EMAMECTIN BENZOATE AND ITS FORMULATIONS

AMEENA MOBEEN 1, 2*, IQRA ISHRAT 1, 3, FAZLI RABBI AWAN1, AND QAI SER M. KHAN1*

1 TOXICITY LAB/NATIONAL INSTITUTE FOR BIOTECHNOLOGY & GENETIC ENGINEERING, FAISALABAD PAKISTAN, 2 PAKISTAN INSTITUTE OF ENGINEERING AND APPLIED SCIENCES, ISLAMABAD PAKISTAN, 3 HEFEI NATIONAL LABORATORY / UNIVERSITY OF SCIENCE & TECHNOLOGY OF CHINA, HEFEI CHINA

*amina25@gmail.com; qk_5@yahoo.com

ABSTRACT

Introduction:
The bio-pesticide, Emamectin benzoate (EMB) mainly used in agriculture and veterinary medicine in developing countries is considered safe due to its target specificity (1). Conversely, non-regulated uses and several toxicology studies have raised concerns that EMB can induce cytotoxic and genotoxic effects (2, 3), and is a potential risk to human and environment.

Objective:
The objective of this study was to identify the toxic and genotoxic effects of technical grade EMB (80%) and its commercially used formulations in Pakistan, tycon 1.9% EC and tycon plus 5% EW.

Methods:
All experiments were approved by the Institutional Animal House Committee #05 and 47. Acute oral and dermal LD50, ocular and dermal irritation in albino rats and rabbit, toxicity (LC50) in freshwater fish (Labeo rohita) was determined using OECD Test Guidelines (4). In vivo acute oral toxicity was assessed in rats (n=3/sex/group) at doses of 50 and 100 mg/kg body weight (BW). After 48 hours, gross and clinical pathology were investigated. Genotoxicity was assessed by in vivo bone marrow micronucleus and Comet assay. Mutagenicity was assessed in S. typhimurium strains TA98 and TA100.

Results and Discussion:
EMB formulations (80%, 5%, and 1.9%) were found moderately toxic (2) based on the Oral LD50 (122 to 168 mg/kg), severe eye irritant, and highly toxic to fish (LC50 ranged 9 to 43 µg/L). Acute oral exposure resulted in significant decrease in red blood cells, hemoglobin, and mean corpuscular volume (MCV). Slight increase in liver enzymes (ALP, ALT), blood urea, glucose, albumin, and total protein levels in rats administered 100 mg/kg. No significant DNA damage was observed in Comet assay and all formulations were found non-mutagenic in TA98 and TA100. Bone marrow toxicity was observed at high dose by reduction in the percentage of polychromatic erythrocytes (PCEs) at both (5% and 80%) concentrations. This study reveals that acute oral exposure to EMB formulations cause hemotoxicity and hepatotoxicity in rats and high toxicity to fish as aquatic organisms. It may contribute to the existing information about the toxicity of EMB for its safer use.

Keywords: Biopesticide, Emamectin benzoate, Acute toxicity, Genotoxic

References:
4. OECD, Guidelines for the Testing of Chemicals, Section 4. ISSN: 20745788, doi.org/10.1787/20745788
TRIGONELLINE PREVENTED ULTRVIOLET-B RADIATION EXPOSURE CULMINATES IN PHOTODAMAGE IN SKIN VIA MODULATION OF ER-STRESS AUTOPHAGY SIGNALLING AXIS

LONE NAZIR AHMAD1,2, MALIK TANVEER1,2, SHEIKH UMAR1,2, NAIKO SHAHID1,2, GUPTA DIVYA1,2, RAGHU SHARMA1,2, Sajda Archoo1,2, SHEIKH TASDUQ ABDULLAH1,2*

1CSIR-INDIAN INSTITUTE OF INTEGRATIVE MEDICINE, JAMMU, INDIA, 2ACADEMY OF SCIENTIFIC AND INNOVATIVE RESEARCH, GHAZIABAD, INDIA

*stabdullah@iiim.res.in; tasduq11@gmail.com

ABSTRACT

Introduction:
Ultraviolet (UV) radiation has been reported a human carcinogen that initially leads to photodamage. The endoplasmic reticulum (ER)-stress and autophagy are the intracellular process responsible for the restoration of cellular homeostasis during unfavourable conditions. Natural products are the best treatment regime of the prevention of UV-B mediated photodamage.

Objective:
The aim of the present study was to find out the role of Trigonelline (TG) on ER-stress autophagy in UV-B radiation-induced skin photodamage that has yet to be elucidated.

Methods:

In vitro cell models were exposed to UV-B at different time interval. BALB/c mice were exposed to UV-B for 16 weeks (Ethics Committee approval 1-1080-2-17-2017). TG was topically applied 1 hour pre- and post-exposure to UV-B. ER-stress, autophagy, inflammation, and collagen degradation were analysed by various biochemical and molecular biology techniques.

Results and Discussion:
In Hs68 cells, UV-B exposure induced radical oxygen species (ROS) generation leading to depletion of ER-calcium and increased ER stress protein markers and apoptotic protein expressions dose and time dependently. In fibroblasts, UV-B induced autophagy after 4-8 hours exposure to rescue the cellular homeostasis. After 24 hours exposure, UV-B radiation perverts the autophagy and directs cells toward photodamage. TG treatment successfully reduced oxidative stress, restored Ca2+ homeostasis and re-established the ER function and prevented apoptotic cell death process. TG treatment in UV-B exposed skin cells also abates UV-B-mediated photo toxicity, oxidative stress, inflammation and apoptosis. At molecular level, TG treatment significantly prevents ROS generation and lipid peroxidation, restores collagen synthesis and matrix metalloproteinase levels. Thus, TG is a potential photo-protective agent.

Keywords: Ultraviolet radiations, skin photodamage, autophagy, ER-stress, Trigonelline

References:
Nazir, et al. Inhibition of ultraviolet-B radiation induced photodamage by trigonelline through modulation of mitogen activating protein kinases and nuclear factor-κB signalling axis in skin. PCPB-Wiley.
TOXICITY ASSESSMENT IMIDAZOLIUM-BASED IONIC LIQUIDS FAMILY BY USING MICROTOX® M500 ANALYZER

MUHAMMAD ISHAQ KHAN¹, DZULKARNAIN ZAINI²*, AZMI MOHD SHARRIF²

¹ DEPARTMENT OF CHEMICAL ENGINEERING COMSATS UNIVERSITY ISLAMABAD, PAKISTAN, ²CENTRE OF ADVANCED PROCESS SAFETY (CAPS) UNIVERSITI TEKNOLOGI PETRONAS MALAYSIA,

*dzulkarnain.zaini@utp.edu.my

ABSTRACT

Introduction:
The study focused on toxicity assessment benchmarking of three different ionic liquids from imidazolium family. The experimental result agreed that longer alkyl chain length give lower EC50 values, which signaled that ionic liquids having higher toxicity.

Objective:
Toxicity assessment of three different ionic liquids from 1-Decyl-3-Methylimidazolium chloride (DMIM Cl) , 1-Butyl-3-Methylimidazolium Tetrafluoroborate (BMIM BF4) and 1-Ethyl-3-Methyl Imidazolium Octyl-Sulphate (EMIM OS) using MICROTOX® M500 Analyzer

Methods:
The inhibition test of Vibrio fischeri was done by evaluating the light output of the bacterium when being exposed to a certain substance. The percentage decreased in the light output of the bacteria is linked to inhibition in the respiration activity which serve as indirect toxicity measurement of the test substances. The effective concentration, EC50 measured by the instrument (usually in (mg/L)) are used as indicator of toxicity where low EC50 value represent higher toxicity and vice versa.

Results and Discussion:
The results indicate that the greater the light loss of the Vibrio fischeri suspension, the more toxic the sample is. On other hand, difference in cation type used in this experiment provides a limitation for this study to assess effect of anion moieties toward ionic liquid’s toxicity. However, the toxicity contribution of octyl sulfate ion towards imidazolium ionic liquid agreed to be higher than tetrafluoroborate based on the experimental finding, as well as previous literature studies. It is encouraged to have further extensive research on the effect of different anion in imidazolium ionic liquids towards ecotoxicity of ionic liquids, as well as environmental biodegradability of imidazolium ionic liquids.

Keywords: Ionic liquid; Imidazolium; Microtox; Toxicity Assessment; Benchmarking

References:
THE ROLE OF NRF2 ON THE CELL APOPTOSIS IN ARSENIC-INDUCED MALIGNANT TRANSFORMATION IN HACAT CELLS

QIANLEI YANG1, CHUNCHUN LI1, KENZO YAMANAKA2, YAN ANA1*

1SCHOOL OF PUBLIC HEALTH, MEDICAL COLLEGE OF SOOCHOW UNIVERSITY, SUZHOU, JIANGSU, CHINA
2LABORATORY OF ENVIRONMENTAL TOXICOLOGY AND CARCINOGENESIS, SCHOOL OF PHARMACY, NIHON UNIVERSITY, CHIBA, JAPAN

*dranyan@126.com

ABSTRACT

Introduction:
Arsenic is confirmed a human carcinogen and chronic exposure to arsenic can reduce cells apoptosis and cause malignant transformation. However, the exact mechanism remains to be elucidated.

Objective:
Explore the dynamic changes of apoptosis and its related proteins expression during sodium arsenite (NaAsO₂)-induced malignant transformation, and the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in this process.

Methods:
Human epidermal keratinocyte (HaCaT) cells were cultured to 35 generations with 0.0 or 1.0 μM NaAsO₂. The changes in cell apoptosis rate and related proteins; Cleaved-caspase-3, Cleaved-caspase-8, Cleaved-caspase-12, CHOP, Bcl-2, Bax, Mcl-1 and Nrf2 in cells exposed to 1.0 μM NaAsO₂ for 0, 1, 7, 14, 21, 28, and 35 passages were detected by flow cytometry and Western blot. The levels of Nrf2, apoptosis rate and apoptosis related proteins in arsenite-transformed HaCaT cells after Nrf2 siRNA transfection were also detected.

Results and Discussion:
Compared with passage 0 cells and passage-control cells (0.0 μM NaAsO₂), the apoptosis rate, the protein expression levels of Caspase-3, Cleaved-caspase-3 protein and Cleaved-caspase-3/Caspase-3 showed downward trend. No obvious change was observed on apoptosis related proteins including the Cleaved-caspase-8, Caspase-8, Cleaved-caspase-12, Caspase-12 protein. Exposure to 1.0 μM NaAsO₂ for 21 passages decreased the expression of CHOP and Bax protein, and increased the expression of Bcl-2, Mcl-1 protein after 14 passages. The expression of Nrf2 protein was significantly increased in T-HaCaT cells. After transfection of arsenite-transformed HaCaT cells (T-HaCaT) with Nrf2 siRNA, the cell apoptosis rate significantly increased. the expression of Cleaved-caspase-3, Caspase-3, CHOP, Bax protein, on the contrary, the Bcl-2, Mcl-1 protein levels were decreased. The ability of colony formation and migration of T-HaCaT cells were decreased after Nrf2 siRNA transfection.

Keywords: NaAsO₂, Malignant transformation, Apoptosis, Apoptosis related proteins, Nrf2

References:
ESTRADIOL AND BISPHENOL A ESTROGENIC EFFECTS ON THE
ROTIFER BRACHIONUS NEVADA

SILVANA ROJAS¹, ADRIANA ARANGUIZ², MARIA FERNANDA CAVIERES¹

¹SCHOOL OF CHEMISTRY AND PHARMACY, UNIVERSITY OF VALPARAISO, CHILE, ²DEPARTMENT OF BIOLOGY, UNIVERSITY OF TARAPACA, CHILE

*fernanda.cavieres@uv.cl

ABSTRACT

Introduction: Rotifers are microscopic aquatic invertebrates used as experimental models due to ease of culture, short life cycle, fast reproduction and small size. They promise to be an effective experimental model for endocrine disruption studies. On the other hand, current bioethical principles call for the replacement of vertebrate animal models, which is an opportunity for the definition of new invertebrate experimental models.

Objective: To evaluate estrogenic effects of estradiol and bisphenol A on rotifers. To propose a mechanism for estrogenic effects induced in rotifers.

Methods: Brachionus nevada individuals were cultured at 0.001, 0.01, 0.1, 1, 10, 100 and 1000 μg/L of estradiol and 0.1, 1, 10, 50, 100 mg/L of bisphenol A. The acute toxicity was estimated by lethal concentration 50. Additional cultures in the presence of the chemicals and tamoxifen, a potent estrogen receptor antagonist, were performed as a means to approach a proposal for mechanism of action mediating the toxicity.

Results and Discussion: Lethal concentration 50 for estradiol was 1,053.04 μg/L and 21,593.10 μg/L for estradiol plus tamoxifen, showing a significant (<0.0001) dose-response curve shift to the right. Lethal concentration 50 for bisphenol A was 2.45 mg/L and 5.93 mg/L, with no significant shifts for the dose-response curve. These observations suggest that the acute toxicity is mediated by the estrogen receptor only for estradiol while bisphenol A acute toxicity is independent of estrogen receptor. The data supports the utility of rotifers as a model for endocrine disruption toxicological studies.

Keywords: estrogenicity, alternative methods, rotifers, bisphenol A

References:
PART VI: ABSTRACTS OF THE POSTER PRESENTATIONS

(c) Food, Herbal or Natural Product Toxicology

Kindly scroll/flip next few pages to view the selected abstract
SINGLE ORAL DOSE TOXICITY STUDY OF ARECA CATECHU AND CYMBOPOGON NARDUS AQUEOUS EXTRACTS IN RATS

SUGANTHI J1*, WAN NURUL NADIA WS1, PUSPAWATHY K1, LALITHA SS1, SIAU TC1, NOORASHIKIN AH1, AZLINA Z1, TEH BP1

1INSTITUTE FOR MEDICAL RESEARCH, NATIONAL INSTITUTES OF HEALTH, MINISTRY OF HEALTH MALAYSIA, 40170 SHAH ALAM, SELANGOR DARUL EHSAN, MALAYSIA

*jsuganthi@moh.gov.my

ABSTRACT

Introduction:
Herbal medicines are generally safe and been used widely for its traditional uses. Nevertheless, inherent toxicity of a herb may pose risk to consumers. Establishing the safety profile of herbs is important to determine limit dose of consumption. Plants named Areca catechu (AC) and Cymbopogon nardus (CN) are traditionally used orally for medicinal purposes but lacking information on its safety.

Objective:
To investigate acute toxicity effect of AC seed and CN aerial aqueous extracts respectively via oral administration in rats.

Methods:
This experiment was conducted according to Organisation of Economic Co-operation and Development (OECD) Test Guideline 420 with animal ethics approval (ACUC/KKM/02(1/2013)). Freeze-dried aqueous extract of plants were given to female Sprague Dawley rats (n=6/plant) at dose 300 and 2,000 mg/kg body weight. The rats were observed for clinical signs at first 30 minutes, 1 hour, 2 hours, 3 hours, 4 hours and then daily for 14 days. On necropsy day, their liver, kidneys and gastrointestinal tracts were examined.

Results and Discussion:
No mortality or signs of toxicity was observed. Body weight, food and water intake of the rats showed increment throughout 14 days. There were episodes of loose stools occurred within four hours after administration of 2,000 mg/kg body weight (sighting and main dose) of AC seed extract but resolved thereafter. The loose stools could be from toxicity effect of high dose. However, evidences show AC seed as a dose-dependant laxative. Gross examination on the organs showed no abnormalities. The calculated human equivalent dose (HED) for the 2,000 mg/kg body weight is 32.26 mg/kg body weight (equivalent to 2,419.5 mg for a 75 kg human). In summary, single dose of AC seed and CN aerial aqueous extracts at 300 and 2,000 mg/kg body weight did not exhibit acute toxicity effects on Sprague Dawley rats. The No Observed Adverse Effect Level (NOAEL) is more than 2000 mg/kg body weight. Longer duration of repeated dosing is highly recommended to further evaluate the potential toxicity of these two herbs.

Keywords: Herb, safety, acute toxicity, Areca catechu, Cymbopogon nardus

References:
HEXANE EXTRACT OF GARLIC SUPPRESSES Methylmercury-MEDIATED TOXICITY

YUMI ABIKO¹, YUSUKE KATAYAMA¹*, MASAIRO AKIYAMA², AND YOSHITO KUMAGAI ¹

¹UNIVERSITY OF TSUKUBA, ²KEIO UNIVERSITY

*yk-tu-em@md.tsukuba.ac.jp

ABSTRACT

Introduction:
Garlic (Allium sativum L.) contains numerous sulfur compounds. We have previously found that reactive sulfur species with higher nucleophilicity such as glutathione persulfide, glutathione polysulfide, protein-bound persulfides, and hydrogen sulfide can covalently bind to methylmercury (MeHg) to give bismethylmercury sulfide [(MeHg)₂S], which is less toxic than MeHg with electrophilicity. It was not clear, however, whether such reactive sulfur species are present in garlic.

Objective:
The purpose of the study was to determine whether garlic components containing reactive sulfur species could react with MeHg to yield the sulfur adduct.

Methods:
We extracted garlic with hexane and then performed silica gel column chromatography to separate constituents. To evaluate existence of reactive per/polysulfide species with sulfane sulfur, formation of (MeHg)₂S during reaction of the extract and MeHg was monitored by high-performance liquid chromatography and atomic absorption spectrophotometry. MeHg-mediated toxicity was determined by MTT assay in cells (HepG2 and SY5Y cells) and body weight loss in C57BL/6J mice. The University of Tsukuba Animal Care and Use Committee approved protocols for animal experiments.

Results and Discussion:
We found that numerous garlic constituents could react to MeHg to form (MeHg)₂S. Hexane extract of garlic decreased MeHg-mediated toxicity in vitro. The levels of cysteine persulfide, glutathione persulfide, hydrogen persulfide, glutathione, and H₂S in mice plasma were significantly increased after 2 h of administration of the garlic hexane extract (250 mg/kg). Although a single oral dose of 50 mg/kg of MeHg decreased the body weight, and 40% of the mice died within 10 days of exposure, simultaneous administration of the garlic hexane extract and MeHg caused suppression of the MeHg-induced toxic effects. These results suggest that ingesting garlic may decrease MeHg toxicity by formation of (MeHg)₂S that inhibit adverse reactions. Reactive per/polysulfides with nucleophilic sulfur in garlic could react with enrinemontal electrophiles yielding electrophile-sulfur adducts to decrease their health risks.

Keywords: methylmercury, reactive sulfur species, garlic, detoxication, bismethylmercury sulfide

References:
https://doi.org/10.1021/tx200394g
https://doi.org/10.1021/acs.chemrestox.5b00101
https://doi.org/10.1016/j.fct.2021.112061
ACUTE ORAL TOXICITY STUDY OF ACALYPHA INDICA AND EUPHORBIA HIRTA IN SPRAGUE DAWLEY RATS

ELDA NURAFNIE IR1*, NOR AZLINA Z1, UMI RUBIAH S1, JANICE CSW1, NUR SALSABEELA MR3, NURMAZIAH MS4, TAVINRAJ R1, SITI ZUBAIDAH CL2 AND TEH BP1

1HERBAL MEDICINE RESEARCH CENTRE, INSTITUTE FOR MEDICAL RESEARCH, NATIONAL INSTITUTES OF HEALTH, 40170, SELANGOR, MALAYSIA, 2LABORATORY ANIMAL RESOURCE UNIT, SPECIAL RESOURCE CENTRE, INSTITUTE FOR MEDICAL RESEARCH, JLN PAHANG, 50588, KUALA LUMPUR, MALAYSIA

*elda@moh.gov.my

ABSTRACT

Introduction: Acalypha indica (AI) and Euphorbia hirta (EH) are herbal plants that belong to the same family, Euphorbiaceae which can be found in the tropical regions with numerous therapeutic benefits due to their anti-oxidant and anti-microbial activities, commonly used for respiratory ailments. Despite numerous pharmacological studies were reported, safety assessment of these medicinal herbs is still limited.

Objective: The study aims to assess the acute toxicity of Acalypha indica and Euphorbia hirta aerial extracts given oral administration once to female Sprague Dawley rats and observed for 14 days.

Methods: Study was conducted according to OECD TG 420 with the approval of Animal Care and Use Committee (ACUC/KKM/02/1/2013). Sighting (300 mg/kg and 2000 mg/kg BW; n=1/dose level) and main studies (2000 mg/kg BW; n=4) were performed to determine the cut-off value of median lethal dose (LD50). Body weight, food and water intake were measured weekly and clinical observation were carried out daily. On day 15, all rats were euthanized and gastrointestinal tract, kidney and liver were harvested.

Results and Discussion: Body weight, food and water intake of each rat were normal for both treatments with no mortality and clinical signs of toxicity at all dose levels. Macroscopic evaluation of all organs revealed no abnormality except for reddening of ileum with prominent Peyer’s in EH-300 mg/kg group. Based on findings in the main studies, this may not be attributed to the test item. In addition, there was no observed effect in AI main group from the extract administration. Traditionally, AI and EH are known for their expectorant benefits apart from AI being consumed for diuretic and laxative use whereas EH is commonly taken for its analgesic effect. Based on this study, LD50 is estimated to be greater than 2000 mg/kg of body weight for AI and EH since there were no mortality and acute toxicity observed. However, further investigation should be conducted to identify toxicity effects in longer duration of the herbal plant treatment.

Keywords: Acalypha indica, Euphorbia hirta, toxicity, rat, herbal plant

References:
OXIDATIVE STRESS AND DNA DAMAGE EFFECT OF *DIOSCOREA HISPIDA* DENNST ON PLACENTAL TISSUES OF RATS

HUSSIN M1, TENGKU AIDEED SYAH TG AB2, MUHAMAD FAIZUL AY2, NORIZAH A1, WAN MAZLINA MS2, ELDA NURAFNIE IR1 AND MAIZATUL HO1

1INSTITUTE FOR MEDICAL RESEARCH, NATIONAL INSTITUTES OF HEALTH, 40170, SELANGOR, MALAYSIA, 2DEPARTMENT OF MEDICAL LABORATORY TECHNOLOGY, FACULTY OF HEALTH SCIENCES, UNIVERSITI TEKNOLOGI MARA PUNCAK ALAM, 42300 SELANGOR, MALAYSIA

huassin.m@moh.gov.my

ABSTRACT

Introduction:
In Malaysia, *Dioscorea hispida* Dennst. is known as “ubi gadung”. It has been traditionally used as a remedy and source of carbohydrate. Steroidal saponins from the tubers were found to have various pharmacological activities. However, other alkaloid compounds like dioscorine and high concentration of cyanogenic glycosides could potentially produce toxicity effects when ingested during pregnancy.

Objective:
To assess the effect of *D. hispida* aqueous extract (DHAE) on the production of reactive oxygen species (ROS) and their effects on DNA damage in placental tissues of Sprague Dawley rat.

Methods:
Pregnant rats were randomly divided into four groups and orally treated with DHAE at 0, 250, 500 or 1000 mg/kg body weight (BW) from gestation day 6 until 20. The rats were sacrificed on day 21 and placental tissues were collected. The level of ROS, superoxide dismutase (SOD) and malondialdehyde (MDA) were measured. The DNA damage was determined using comet assay. The experiment was approved by Animal Care and Use Committee, Ministry of Health Malaysia (ACUC/KKM/02/10/2016).

Results and Discussion:
No significant production of ROS and SOD activities in all groups. Significant changes were observed in the MDA level at 1000 mg/kg BW DHAE. Comet assay revealed a significant increase (p < 0.05) of DNA damage on rats treated with 250 and 500 mg/kg BW DHAE but not at the highest concentration. It was postulated that the placental cells could have undergone necrosis which destroyed all components including DNA. This occurrence simultaneously reduces the level of DNA damage which can be represented by low level of tail moments. This finding correlates with our histopathological examination where necrotic cells of spongiotrophoblast was observed in the basal zone of placental tissue. The high amount of hydrogen cyanide and other compounds in 1000 mg/kg BW DHAE could elevate the production of ROS and directly induce cell necrosis which requires further investigation.

Keywords: *Dioscorea hispida*, DNA damage, reactive oxygen species, placenta

References:
Hussin M., Shahira Fariza M., Wan Mazlina MS., et al. (2019). Histopathological changes in placental of *Dioscorea hispida* var. daemona (Roxb) Prain & Burkill. Food and Chemical Toxicology.131: 110538
EVALUATION OF SWietenia Macrophylla TOXICITY USING CELL-BASED ASSAY

MARY KHOO GAiK HONG1, ZUNOLiZA ABDULLAH1, FAUZiAH ABDULLAH1, NORAINi KASiM2, AHMAD ROHI GHAZALI3 AND CHAN KOK MENG3

1FOREST RESEARCH INSTITUTE MALAYSIA, KEPOng, MALAYSIA, 2FACULTY OF APPLIED SCIENCES, UNIVERSITI TEKNOLOGI MARA, SHAH ALAM, MALAYSIA AND 3FACULTY OF HEALTH SCIENCES, UNIVERSITI KEBANGSAAN MALAYSIA, JALAN RAJA MUDA ABDUL AZIZ, KUALA LUMPUR, MALAYSIA

mary@frim.gov.my

ABSTRACT

Introduction:
Swietenia macrophylla (family Meliaceae) is a timber species with medicinal value. It is commonly known as big-leaf mahogany or tunjuk langit. The seed is used traditionally and has been proven to exhibit anti-diabetic, anti-hypertensive, anti-diarrhoeal and analgesic activities. However in 2018, there were several cases of liver injury suspected to be associated with S. macrophylla seed consumption.

Objective:
The aim of this study is to assess the toxicity of S. macrophylla seed extracts (50:50 aqueous ethanolic, 100% ethanolic, and 100% methanolic) using cell-based assay.

Methods:
HepG2 cell line was used as an in vitro liver model. The cells were treated with various concentrations of the extracts for 24, 48 and 72 hours. For the 24-hour exposure, cells were treated with the extract in serum-free medium but for the 48- and 72-hour exposure, 2% foetal bovine serum was added to the treatment medium because of longer incubation time. Cytotoxicity was assessed by 3, (4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) assay.

Results and Discussion:
The aqueous ethanolic, ethanolic and methanolic extracts only decreased approximately 45%, 47% and 61% of HepG2 viability at the highest concentration tested (1,000 µg/ml) after 24 hours exposure, respectively. The median inhibitory concentration (IC50) was considered > 1,000 µg/ml for both the aqueous ethanolic and ethanolic extracts while for the methanolic extract, the IC50 was calculated to be 483.60 ± 90.95 µg/ml based on non-linear regression. When the experiment was repeated with 48- and 72-hour exposure, none of the extracts decreased cell viability more than 50%. The IC50 values for all three extracts with 48- and 72-hour exposure were therefore considered > 1000 µg/ml. These observations showed that S. macrophylla seed extracts do not appear to be tremendously cytotoxic based on MTT assay. There are three plausible explanations, (1) the extract is by nature not cytotoxic; (2) MTT assay is not sensitive enough to detect subtle toxicity; and (3) the toxic constituent(s) is not soluble in water, ethanol, and methanol, thus not extracted and not tested in the cytotoxicity evaluation.

Keywords: Swietenia macrophylla, cell-based assay, MTT assay, toxicity, cytotoxicity

References:
NEUROTOXIC EFFECT OF MALAYSIAN COBRA VENOMS AND NEUTRALIZATION BY THAI’S ANTIVENOMS

NOR ASYIKIN ZUKIFLI¹, ZALIKHA IBRAHIM¹, IEKHSAN OTHMAN², AHMAD KHALDUN ISMAIL³, JANYEUTH CHAISAKUL⁴, MUHAMAD RUSDI AHMAD RUSMILI¹

¹KULLIYYAH OF PHARMACY, IIUM, ²JEFFREY CHEAH SCHOOL OF MEDICINE AND HEALTH SCIENCES, MONASH UNIVERSITY MALAYSIA, ³UNIVERSITI KEBANGSAAN MALAYSIA MEDICAL CENTRE, UKM, ⁴PHRAMONGKUTKLAO COLLEGE OF MEDICINE

*asyikinzukifli@gmail.com

ABSTRACT

Introduction:
N. sumatrana and N. kaouthia are two medically important species of cobra in Southeast Asia. They are known to cause neurotoxicity symptoms. In Malaysia, systemic envenoming caused by cobra is treated using antivenoms imported from Thailand. Variations in venom in a locality could cause antivenom produced in another locality to be ineffective and increase treatment cost.

Objective:
Objectives of this study are to assess neurotoxic effect of Malaysian N.sumatrana and N.kaouthia and effectiveness of Thai antivenom for reversing neurotoxicity using in-vitro preparation.

Methods:
In-vitro neurotoxic effects of N. sumatrana and N. kaouthia crude venom were assessed by indirect stimulated chick biventer cervicis preparation. The neurotoxicity activity was determined using time for 90% reduction in twitch response (t90) and response to exogenous ACh, CCh and KCl. Neutralization was assessed using cobra antivenom and kinecobra antivenom by pre-incubation of antivenom and addition of antivenom at t90. Animal ethic approval ID:IIUM/IACUC-2019(13).

Results and Discussion:
Both venoms were found to elicit concentration-dependent effect and reduced response to exogenous agonists in the chick biventer cervicis preparation. N. kaouthia venom was found to be more potent than N. sumatrana venom based on t90 value. Both venoms contain postsynaptic neurotoxin and myotoxin based on ACh, CCh and KCl responses. In the pre-incubation study, all antivenoms significantly attenuated reduction of twitch compared to venom alone but when added at t90, did not restore twitch height for Cobra Antivenom and King Cobra Antivenom. Our finding showed that neurotoxicity caused by Malaysian N.sumatrana and N.kaouthia could be differentiated using in vitro preparation and the effect can be prevented by pre-incubation using Thai’s Cobra Antivenom and King Cobra Antivenom.

Keywords: venom, neurotoxicity, antivenom, Naja sumatrana , Naja kaouthia

References:
HISTOLOGICAL EFFECT OF ORAL GENTAMICIN-NIGELLA SATIVA EMULSION TREATMENT IN RABBIT OSTEOMYELITIS MODEL

MUHAMMAD HAMZAH AHMAD HALMI1*, MOHD AFFENDI MOHD SHAFRI2, FARAHIDAH MOHAMED2 AND NAZRI MOHD YUSOF3

1DEPARTMENT OF BIOMEDICAL SCIENCE, FACULTY OF ALLIED HEALTH SCIENCES, INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA (IIUM), KUANTAN, MALAYSIA 2 DEPARTMENT OF PHARMACEUTICAL TECHNOLOGY, FACULTY OF PHARMACY, INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA (IIUM), KUANTAN, MALAYSIA, 3 DEPARTMENT OF ORTHOPAEDIC, FACULTY OF MEDICINE, INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA (IIUM), KUANTAN, MALAYSIA

*hamzahhalmi@gmail.com

ABSTRACT

Introduction:
A stable emulsion which contains gentamicin and Nigella sativa oil (NSO) has been formulated as a potential antimicrobial therapy to treat osteomyelitis caused by Staphylococcus aureus. Previously, gentamicin and N. sativa emulsion (GNE) was reported to be particularly effective against S. aureus and produced better inhibition and capable to impede the ability of bacteria to form biofilm.

Objective:
To assess the safety and the possibility of current formulation to act as enabler for gentamicin absorption into the blood, thus allowing gentamicin to be delivered orally to treat osteomyelitis in rabbits.

Methods:
In this study, 12 rabbits were divided into four equal groups, two of which orally treated with GNE at doses of 50 mg/gentamicin/kg (Group III) and 100 mg/gentamicin/kg (Group IV). The doses were given daily for one week. Osteomyelitis was established using S. aureus in rabbits in Group II, III and IV prior to the treatment period, while Group I served as the sham control. After the rabbits were sacrificed, the kidneys and livers were removed for histological examination. The procedure of animal care and handling was approved by the Institutional Animal Care and Use Committee of International Islamic University Malaysia (No of IACUC Approval: IIUM/IACUC Approval/2016/ (9) (48)).

Results and Discussion:
Toxicity in kidney and liver tissues were observed in Group IV (100 mg/gentamicin/kg) as exemplified by the structural damage, inflammation and vacuolation. No histopathological lesions were observed in either liver or kidney tissue in Group III (50 mg/gentamicin/kg). This show that the current formulation of GNE could be a safe therapeutic option for patients with osteomyelitis condition. However, there is a need to refine the dosing regimen in order to further minimize toxicity but at the same time can provide an effective dose for bacterial eradication.

Keywords: Osteomyelitis, GNE Staphylococcus aureus, antibiotics.

References:
TOXICITY PROFILE OF THE AERIAL METHANOL EXTRACT OF
ALYSICARPUS GLUMACEUS VAHL DC (LEGUMINOSAE) IN
DROSOPHILA MELANOGASTER

FERHAT KHAN1*, MUNIR ARI SANI2, AMINA BUSOLA OOLORUKOOBA1, JIBRIL IBRAHIM3, FARIDA AMINA BANGUDU1 AND MUBARAK MUHAMMAD SABO1

1DEPARTMENT OF PHARMACOLOGY AND THERAPEUTICS, AHMADU BELLO UNIVERSITY, ZARIA-NIGERIA, 2DEPARTMENT OF VETERINARY SURGERY AND RADIOLOGY, AHMADU BELLO UNIVERSITY, ZARIA-NIGERIA, 3DEPARTMENT OF SCIENCE LABORATORY TECHNOLOGY, FEDERAL POLYTECHNIC, BAUCHI-NIGERIA

*khanferhat@ymail.com

ABSTRACT

Introduction:
Alysicarpus glumaceus Vahl DC (Leguminosae) is used to treat asthma, cough, wound, thrush, sores, mental and stomach disorders. It is widely distributed across Africa, Asia and Australia. It is also used as fodder and for grazing. Recent report on its use in combination with other plants in Nigeria suggests it has central stimulantary effects.

Objective:
This study was done to determine the safety profile of the aerial methanol extract of Alysicarpus glumaceus in Drosophila melanogaster.

Methods:
Toxicity study were done in two phases for 7 days. The first phase (minimum concentration), D. melanogaster were treated with 10 mg, 20 mg, 30 mg, 40 mg and 50 mg of the extract /10 g diet; and in the second phase (maximum concentration), with 100 mg, 250 mg, 500 mg, 750 mg and 1000 mg of the extract /10 g of diet and mortality was observed daily. The data obtained from the experiment was analyzed by probit analysis using Graphpad prism 5.

Results and Discussion:
The median lethal concentration (LC50) in Drosophila melanogaster was estimated to be greater than 1000 mg/10 g of diet from the daily mortality reading recorded for 7 days for both phases of the study. From the results obtained in this study, it can be concluded that the aerial methanol extract of Alysicarpus glumaceus is relatively non-toxic.

Keywords: Toxicity, Alysicarpus glumaceus, Drosophila melanogaster,

References:
ASSESSMENT OF CURCUMIN PIPERIDONE DERIVATIVES-INDUCED ANTI-PROLIFERATION ON HUMAN GLIOBLASTOMA LN-18 CELLS

NUR SYAHIRAH CHE RAZALI1, CHAN KOK MENG1*, LAM KOK WAI2, NOR FADILAH RAJAB1, A RAHMAN A JAMAL3

1FACULTY OF HEALTH SCIENCES, 2FACULTY OF PHARMACY, UNIVERSITI KEBANGSAAN MALAYSIA, JALAN RAJA MUDA ABDUL AZIZ, 50300 KUALA LUMPUR, MALAYSIA
3UKM MEDICAL MOLECULAR BIOLOGY INSTITUTE, UKM MEDICAL CENTRE, 56000 CHERAS, MALAYSIA.

*chan@ukm.edu.my

ABSTRACT

Introduction:
Curcumin has been found to possess anti-cancer effects on many cancer cell lines. However, the drawbacks of curcumin having a poor bioavailability and rapid metabolism have prompted researchers to look for alternatives, such as designing new synthetic curcumin derivatives. Our group have synthesized new curcumin piperidone derivatives in order to overcome the drawbacks of curcumin.

Objective:
To study the anti-proliferative effect of the piperidinone derivatives FLDP-5 and FLDP-8 curcuminoid analogues on human glioblastoma LN-18 cells

Methods:
The cytotoxicity of FLDP-5 and FLDP-8 were assessed using MTT assay (0.625 – 20 µM). Then, we further proceeded to flow cytometric assessment of the mode of cell death induced by these compounds using Annexin V-FITC/PI staining. The role of reactive oxygen species (ROS) and mitochondria in the cell death process were investigated using HE and TMRE staining respectively in conjunction with flow cytometry.

Results and Discussion:
The results from MTT assay and apoptosis assessment showed that the curcuminoid derivatives, FLDP-5 and FLDP-8 induced cytotoxicity through apoptosis in human glioblastoma LN-18 cells in a concentration-dependent manner after 24 hour treatment. The IC50 values for the FLDP-5 and FLDP-8 derivatives were 2.5 µM and 4 µM respectively, which were more potent compared to curcumin (IC50 of 45 µM). A significant increase (p<0.05) in the superoxide anion level upon 1 hour treatment confirmed the oxidative stress involvement in the cell death process induced by these derivatives. Interestingly, the loss of mitochondrial membrane potential (ΔΨm) was seen as early as 30 minutes treatment with the derivatives (p<0.05), which indicated an early mitochondrial damage. These findings elucidate the potential of FLDP-5 and FLDP-8 curcuminoid derivatives in human glioblastoma LN-18 cells and further investigation into the underlying mechanism could greatly enhanced the understanding of the anti-cancer role of these compounds.

Keywords: Curcumin, Curcuminoid derivatives, Anti-proliferation, Apoptosis

References:
UNDERSTANDING THE REPRODUCTIVE TOXICITY OF PHYTOESTROGENS: A SYSTEMATIC REVIEW

NUR NADHIRAH SUHAIMI, MAISARAH NASUTION WARAS, NURHUDA MOHAMAD ANSOR*

INTEGRATIVE MEDICINE CLUSTER, ADVANCED MEDICAL AND DENTAL INSTITUTE, UNIVERSITI SAINS MALAYSIA, SAINS@BERTAM, 13200 KEPALA BATAS, PULAU PINANG

*nurhuda.ansor@usm.my

ABSTRACT

Introduction:
Phytoestrogens are naturally occurring compounds present in various food sources. Phytoestrogens are mimicking estrogen structurally and may also exert estrogenic effects on their own. Many studies have reported the health benefits of phytoestrogens; however, knowledge of these compounds' toxicity to female reproduction is crucial to define appropriate conditions for use and safe product development.

Objective:
This study aims to provide an overview and critical evaluation of evidence from the scientific literature on reproductive toxicity of phytoestrogens in in vitro and in vivo experimental studies.

Methods:
A literature search was performed on full-text electronic databases such as Scopus, Science Direct, PubMed, and Google Scholar that looked into adverse effects of phytoestrogens in vitro and in vivo studies. The search was limited to articles published in the English language since the past decade (1 January 2011 to 31 December 2020). Titles and abstracts of articles found were assessed to remove duplicate data. All potentially relevant full texts were screened to verify the study’s eligibility.

Results and Discussion:
A total number of 1409 studies were identified through the literature. Of these, 444 studies were duplicated studies. After further screening through titles, abstracts, and full texts, 418 studies were excluded due to fail to meet inclusion criteria, while 26 studies were selected for this study. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 guidelines and checklists were used to develop the study criteria to eliminate attrition biases, raised from incomplete reporting data for each outcome and reporting biases. The selected studies in this systematic review showed that exposure to phytoestrogens might decrease fertility, inhibit endogenous estrogen production in the ovary, cause disturbances to immune system regulation, and lead to defects in follicle development. The adverse effects reported raise awareness of the toxicity of phytoestrogens, particularly to female reproduction that can potentially impair the function of a woman's reproductive organs.

Keywords: phytoestrogen, flavonoid, reproductive toxicity

References:
PART VI: ABSTRACTS OF THE POSTER PRESENTATIONS

(d) Computational Toxicology

Kindly scroll/flip next few pages to view the selected abstract
Computational Prediction of Pulmonary Permeability of Chemicals

Hui-Lun Lin¹, Chia-Chi Wang², Chun-Wei Tung¹, ³*

¹Graduate Institute of Data Science, Taipei Medical University, Taiwan, ²School of Veterinary Medicine, National Taiwan University, Taiwan, ³National Institute of Environmental Health Sciences, National Health Research Institutes, Taiwan

*ctung@tmu.edu.tw

Abstract

Introduction:
Pulmonary permeability values obtained from in vitro experiments, known as apparent permeability (Papp), is critical for drug transportation and development. However, in vitro experiments are time-consuming and labor-intensive, and there are currently no computational models for assessing human lung permeability. Computational prediction models for in vitro airway epithelial barrier permeability are therefore desirable.

Objective:
The aim of this study is to develop a model to predict the pulmonary permeability of various chemicals.

Methods:
A total of 59 chemicals with Papp values representing the permeability characteristics of Calu-3 (human lung cancer cell line) were divided into training and test datasets. An ensemble regression model was developed by integrating linear regression and random forest. Cross-validation on the training dataset and prediction on the test dataset were conducted to evaluate the model performance.

Results and Discussion:
This study presents the first quantitative structure-activity relationship (QSAR) model for predicting in vitro pulmonary permeability. Based on a sequential feature selection algorithm, there were seven descriptors identified as informative features for predicting Papp values, such as topological polar surface area (TopoPSA) which was the most common physicochemical properties related to permeability. The final model based on the seven identified features performed well with correlation coefficients of 0.932, 0.803 and 0.859 for model fitting, 10-fold cross-validation and independent test, respectively. Altogether, the ensemble model based on the seven features is a potentially useful model to predict pulmonary permeability. In the future, we would follow the Organisation for Economic Co-operation and Development (OECD) guideline for validation of QSAR model to determine the applicability domain of the developed model. The model is expected to be useful for drug development and chemical risk assessment.

Keywords: Ensemble learning, Calu-3, Pulmonary permeability, Airway epithelial barrier

References:
TOXICOGENOMIC ANALYSIS OF BERBERINE'S PROTECTIVE ROLE IN TOXIC METALS INDUCED ALZHEIMER'S DISEASE

KATARINA ŽIVANČEVIĆ1*, KATARINA BARALIĆ1, DRAGICA JORGOVANOVIĆ1, MARIJANA ĆURČIĆ1, EVICA ANTONIJEVIĆ1, BILJANA ANTONIJEVIĆ1 AND DANIJELA ĐUKIĆ-ČOSIĆ1

1UNIVERSITY OF BELGRADE – FACULTY OF PHARMACY/DEPARTMENT OF TOXICOLOGY “AKADEMIK DANILO SOLDATOVIĆ”

* kajaziv93@gmail.com

ABSTRACT

Introduction:
Environmentally relevant toxic metals are reported as neurodegenerative disorders progenitor, playing a role in the precipitation of abnormal β-amyloid protein and hyperphosphorylated tau, the hallmarks of Alzheimer's disease (AD). The current therapies confer partial protection. Alternative approaches targeting phytochemicals, such as berberine have been proposed as an additional form of treatment.

Objective:
The aim of this study was to examine the toxicogenomic basis for the positive effect of berberine against environmentally relevant toxic metals induced AD, applying data analysis.

Methods:
The Comparative Toxicogenomic Database retrieved the set of genes common to lead, cadmium, arsenic and methylmercury linked with AD development and the set of genes by which berberine exerts a therapeutic mode of action in AD. GeneMania prediction server revealed detailed gene interactions, while Metascape analysed protein-protein interaction enrichment (PPIE). SwissADME evaluated physicochemical properties of berberine.

Results and Discussion:
Ten of the seventeen genes related to berberine therapeutic effects in AD are common to metal-induced AD: ACHE, APP, BAX, BCL2, CASP3, HMOX1, IL1B, MAPT, SOD2, TNF. Berberine exerts antagonistic effect to these genes. Selected genes' interaction network analysis revealed server predicted interactions (46.70%) and physical interactions (18.66%) as the most represented. The inference of enriched biological processes showed apoptotic signaling pathway, positive regulation of organelle organization and response to oxidative stress as the most prominent pathways involved in berberine protective action towards toxic metals. PPIE analysis showed regulation of apoptotic signaling pathway as the main gene ontology process potentially targeted with berberine. Physicochemical properties and pharmacokinetics of berberine are in accordance with the hypothesis of its beneficial properties in AD due to high gastrointestinal absorption and capability to pass blood-brain barrier.

Keywords: toxic metals, berberine, Alzheimer's disease, toxicogenomics

References:

(e) Mechanistic Toxicology

Kindly scroll/flip next few pages to view the selected abstract
SUPEROXIDE DISMUTASE ACTIVITY IN THE BLOOD OF WISTAR RATS AFTER SUBACUTE EXPOSURE TO LOW LEVELS OF LEAD

DRAGANA JAVORAC*, MILENA ANDELKOVIĆ, ALEKSANDRA BUHA, EVICA ANTONIJEVIC, KATARINA BARALIĆ, DANIJELA D.-Č., MARIJANA ĆURČIĆ, BILJANA ANTONIJEVIC AND ZORICA BULAT

DEPARTMENT OF TOXICOLOGY “AKADEMIK DANILO SOLDATOVIĆ” UNIVERSITY OF BELGRADE – FACULTY OF PHARMACY, 11000 BELGRADE, SERBIA

*dragana.javorac@pharmacy.bg.ac.rs

ABSTRACT

Introduction:
Lead (Pb) is toxic metal widely distributed in environment. One of the main mechanisms of its toxicity is induction of oxidative stress, by stimulation of free radicals production and inhibition of antioxidant enzymes. Since most research up to date has focused on the effects of higher Pb exposure, there is insufficient data available to form a dose-response relationship on low levels of Pb exposure scenario.

Objective:
The aim of this study was to investigate superoxide dismutase (SOD) activity in blood of Wistar rats, in low Pb dose exposure scenario and to perform dose response modeling.

Methods:
Six groups (male Wistar rats, n=6), received 0.1; 0.5; 1; 3; 7; 15 mg Pb/kg body weight/day for 28 days by oral gavage, while control group was untreated. All animals were sacrificed 24h after treatment and serum was used for determination of SOD activity. Statistical analysis was performed using SPSS 18.0, IBM, Armonk, NY, USA. Dose-response modeling was performed using PROASTweb software. The study was approved by the Ethic Committee (No. 323-07-11822/2018-05).

Results and Discussion:
Lead induced a significant decrease of serum SOD in all treated groups compared to the control, indicating that no observed adverse effect level (NOAEL) dose for the SOD activity is lower than the lowest dose used in the experiment, 0.1 mg Pb/kg/day. Dose response modeling was performed and confidence interval was determined using the model averaging method. For an effect dose of 5%, the proposed confidence interval was BMDL5 (2.5e-05 mg Pb/kg/day) and BMDU5 (12.6 mg Pb/kg/day). SOD has been proposed to play a key role in protecting cells from the toxic effects of superoxide anion radical. Our results demonstrated dose response inhibition of SOD in all treated groups that might be explained by direct inhibition of this enzyme by Pb or by the ability of Pb to replace metals that serve as enzyme co-factors. These results show that a low dose of Pb affects SOD function after 28 days exposure in Wistar rats, indicating that the decrease of SOD in the blood might be a sensitive indicator of Pb exposure.

Keywords: Pb toxicity, low doses exposure, dose response modeling, antioxidant enzyme

References:
ANTITUMOR ACTIVITIES OF PHENYLTIN(IV) DITHIOCARBAMATE COMPOUNDS IN HUMAN ERYTHROLEUKAEMIA CELL LINE K562

SHARIFAH NADHIRA SYED ANNUAR1, NURUL FARAHANA KAMALUDIN1*
AND NORMAH AWANG1

1CENTER FOR TOXICOLOGY AND HEALTH RISK STUDIES (CORE), FACULTY OF HEALTH SCIENCES, UNIVERSITI KEBANGSAAN MALAYSIA, KUALA LUMPUR, MALAYSIA

*nurulfarahana@ukm.edu.my

ABSTRACT

Introduction:
The success of the first clinical metal-based drug, cisplatin, has brought the attention to develop other metallopharmaceutical drugs with lower toxicity and fewer side effects. Over the years, organotin (IV) compounds have been synthesized, characterized and reported in portraying effective antitumor effects in their own stable state of physical and chemical properties.

Objective:
To study the antitumor activities in which apoptosis induced cytotoxicity of di-,tri-phenyltin(IV) dithiocarbamate compounds via mitochondria-mediated pathway in human erythroleukaemia cells K562.

Methods:
Cytotoxicity effect and the mode of cell death were determined by MTT and Annexin V-FITC/PI assay, respectively. Cell cycle arrest and oxidative stress were identified by cell cycle analysis and N-acetyl-L-cysteine (NAC) and dihydroethidium (HE) staining assays, respectively. Loss of mitochondrial membrane potential was assessed by tetramethylrhodamine ethyl ester (TMRE) staining assay.

Results and Discussion:
Phenyltin(IV) dithiocarbamate compounds inhibited K562 cell lines growth with a lower IC50 values, ranging from 0.55 μM to 6μM. The respective IC50 value of all compounds induced 46% to 69% apoptotic cell death, characterised by modulation of mitochondria pathway and production of reactive oxygen species. Moreover, the ability of compound 2 to arrest S phase, suggests that organotin (IV) compounds are DNA-targeted, which in line with most chemotherapeutic drugs target. The cells were being pre-treated with N-acetyl-L-cysteine (NAC) prior to the induction of organotin (IV) compound to identify the role of oxidative stress. Indeed, by the NAC pre-treatment, the apoptotic cells were significantly dropped as compared to the non-induction of NAC. Organotin (IV) compounds exhibit potent cytotoxic effect and induce apoptosis through mitochondrial pathway, attaining a higher potential to be developed as metallopharmaceutical antitumor drugs.

Keywords: organotin, dithiocarbamate, cytotoxicity, apoptosis, antitumor

References:
PART VI: ABSTRACTS OF THE POSTER PRESENTATIONS

(f) Risk Assessment & Others

Kindly scroll/flip next few pages to view the selected abstract
CARCINOGENIC AND ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN EGGS AND SOILS NEAR A GOLD MINE IN THAILAND

PAWEENA AENDO1, RACHANEEKORN MINGKHWAN2, KAMONTHIP SENACHAI3 AND PHITSANU TULAYAKUL4*

1FACULTY OF VETERINARY MEDICINE, KASETSART UNIVERSITY, THAILAND, 2FACULTY OF TROPICAL MEDICINE, MAHIDOL UNIVERSITY, THAILAND, 3PHICHIT PROVINCIAL LIVESTOCK OFFICE, THAILAND, 4FACULTY OF VETERINARY MEDICINE, KASETSART UNIVERSITY, THAILAND.

* fvetpmt@ku.ac.th

ABSTRACT

Introduction:
Gold mining is a major activity of concern as it causes increasing heavy metals contamination in the environment, globally. Various farming activities surrounded the largest gold mining in Northern Thailand that had been in operation for 16 years and decommissioned since 2016. However, evaluation of heavy metals impact on health and ecological risk in the surrounding area was limited.

Objective:
To determine total mercury (THg), lead (Pb) and cadmium (Cd) concentrations in the eggs and soils collected from poultry farms to assess carcinogenic and ecological risks.

Methods:
Thirty chiken eggs and six soil samples from six farms within <25 km radius of a gold mining area were analyzed for heavy metals contaminations (EPA Method 200.8 and Method 3050B). Spearman’s rank correlation coefficient was used to determine the relationship between heavy metal contamination in eggs and soil samples. The contamination factor (CF) and potential ecological risk index (RI) were calculated to assess soil contamination and human health risk assessment was based on carcinogenic risk.

Results and Discussion:
Pb average level in eggs correlated with the level in soil (P < 0.05). Potential ecological risk (ER) index coefficient were ER(Cd)>ER(THg)>ER(Pb). The pollution degree of Cd for ER was 89.89 and the RI was 95.69, indicating potential ecological risk in this area. The soil CFs were Pb(1.22)>Cd(1.07)>THg(0.12), indicating enrichment of Pb and Cd in this area. The incremental lifetime cancer risk (ILCR) of both Pb and Cd exceeded 0.0001 in all age groups, indicating significant health effects for the cancer risk. The ILCR of Pb and Cd were highest in 13-18 years old and 18-35 years old groups. Human cancer risk was well correlated with both Pb and Cd levels in chicken eggs from poultry farms near the gold mining area. The long-term health surveillance for eggs and environment, and safety policy on farming nearby gold mining area must be introduced.

Keywords: Eggs, Soil, Heavy Metals, Gold mining, Carcinogenic

References:
UP TAKE OF CARBOXYL-POLYETHYLENE GLYCOL-
FUNCTIONALISED GOLD NANOPARTICLES INTO
SPHEROIDS

SETH-FRERICH FOBIAN1*, VANESSA STEENKAMP1, MARY GULUMIAN2, AND
WERNER CORDIER1

1DEPARTMENT OF PHARMACOLOGY, FACULTY OF HEALTH SCIENCES, UNIVERSITY OF PRETORIA,
SOUTH AFRICA, 2TOXICOLOGY SECTION, NATIONAL INSTITUTE FOR OCCUPATIONAL HEALTH,
SOUTH AFRICA

*sethfobian@gmail.com

ABSTRACT

Introduction:
Drug discovery is hindered by non-representative monolayer in vitro models. Three-dimensional (3D) multicellular tumor spheroids are a more appropriate and representative platform. Complementarily, nanomedicines show theragnostic potential. Health and safety profiles of engineered nanomaterials are also under scrutiny – all of the above stand to be advanced by the findings from this study.

Objective:
Establishment of a 3D A549 (human lung carcinoma cell line) drug discovery and testing platform to elucidate uptake mechanisms employed by carboxyl-polyethylene glycol-functionalised gold nanoparticles (PCOOH-AuNPs).

Methods:
Liquid-overlay A549 spheroids' uptake mechanisms were assessed by counting internalised PCOOH-AuNPs using CytoViva® hyperspectral imaging of 5 µm spheroid sections, post-incubation with uptake inhibitors: sodium azide, dynasore, 5-(N-ethyl-N-isopropyl)amiloride, genistein, and chlorpromazine. Cell growth, as well as PCOOH-AuNP and inhibitor cytotoxicities, were assessed using lactate dehydrogenase release. Spheroid morphology was assessed via microscopy and live/dead staining.

Results and Discussion:
Cytotoxicity was absent for all exposure groups (PCOOH-AuNPs: 2 and 24 h; inhibitors: 3 h). Clathrin-mediated endocytosis (CME) was noted as the primary endocytic mechanism, 33.5%–54.8% of PCOOH-AuNPs being taken up this way, meaning the NPs are largely trafficked towards a degradative fate in the lysosome. Mean penetration into spheroids of 4.5 µm indicated low transcytosis. Lysosomal membrane permeabilisation could be a desirable possible mechanism of action. Findings enable reproducible 3D in vitro NP testing and inform future design of AuNPs with improved therapeutic profiles.

Keywords: alveolar carcinoma, clathrin-mediated endocytosis, gold nanoparticles, uptake, spheroids

References:

doi:10.1038/srep19103
ABSTRACT

Introduction:
The Iberoamerican Network of Toxicology and Chemical Safety (RITSQ), began 15 years ago due to the initiative and the close and effective collaboration between Dr. Silvia Barros, from the University of São Paulo, in Brazil and Dr. Eduardo de la Peña, at the time president of the Spanish Association of Toxicology. The first meeting was held in Santiago, Chile, in August 2006 during the Latin American Congress of Toxicology (ALATOX).

Objective:
Here we present an overview of the activities of RITSQ during these fifteen years.

Methods:
We have searched the records of RITSQ to highlight the main activities during these years.

Results and Discussion:
After the initial meeting in 2006, in Santiago, Chile, RITSQ set up a web page (http://ritsq.org) with objectives and information on activities in the field of toxicology. The page and its information is open and freely available. We publish information on congresses and meetings, especially those organized in Iberoamerica (Latin America, Portugal and Spain). We also present posters with our information at congresses and meetings attended by our members. The number of visits to our webpage has continually increased throughout the years reaching 69,902 users, 101,515 sessions and a total of 206,668 visits.

Keywords: RITSQ, toxicology collaboration and networking

References:
Not applicable or not provided by author
PART VII: CTDC12
INVITATION ANNOUNCEMENT

KINDLY REFER TO THE IUTOX WEBSITE FOR THE LATEST NEWS

CTDC Meetings
Congress of Toxicology in Developing Countries

Held every three years, Congresses on Toxicology in Developing Countries (CTDC) are sponsored by IUTOX. The meetings provide a forum for discussing toxicological problems facing developing countries in the future and exchanging views with toxicologists from all over the world, especially from developing countries and regions.